ترغب بنشر مسار تعليمي؟ اضغط هنا

CGC/saturation approach for soft interactions at high energy: long range rapidity correlations

108   0   0.0 ( 0 )
 نشر من قبل Eugene Levin
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English
 تأليف E. Gotsman




اسأل ChatGPT حول البحث

In this paper we continue our program to build a model for high energy soft interactions, that is based on the CGC/saturation approach.The main result of this paper is that we have discovered a mechanism that leads to large long range rapidity correlations, and results in large values of the correlation function $RLb y_1,y_2Rb ,geq ,1$, which is independent of $y_1$ and $ y_2$. Such behaviour of the correlation function, provides strong support for the idea, that at high energies the system of partons that is produced, is not only dense, but also has strong attractive forces acting between the partons.



قيم البحث

اقرأ أيضاً

230 - E. Gotsman 2015
In this letter we demonstrate that our dipole model is successful in describing the inclusive production within the same framework as diffractive physics. We believe that this achievement stems from the fact that our approach incorporates the positiv e features of the Reggeon approach and CGC/saturation effective theory, for high energy QC
71 - E.Gotsman 2015
We estimate the value of the survival probability for central exclusive production, in a model, which is based on the CGC/saturation approach. Hard and soft processes are described in the same framework. At LHC energies, we obtain a small value for t he survival probability. The source of the small value, is the impact parameter dependence of the hard amplitude. Our model has successfully described a large body of soft data: elastic, inelastic and diffractive cross sections,inclusive production and rapidity correlations, as well as the $t$-dependence of deep inelastic diffractive production of vector mesons
62 - E. Gotsman 2016
In this paper we continue our program to construct a model for high energy soft interactions, based on the CGC/saturation approach. We demonstrate that in our model which describes diffractive physics as well as multi-particle production at high ener gy, the density variation mechanism leads to the value of $v_2$ which is about $60% div 70%$ of the measured $v_2$. Bearing in mind that in CGC/saturation approach there are two other mechanisms present: Bose enhancement in the wave function and local anisotropy, we believe that the azimuthal long range rapidity correlations in proton-proton collisions stem from the CGC/saturation physics, and not from quark-gluon plasma production.
103 - E. Gotsman 2014
We present our first attempt to develop a model for soft interactions at high energy, based on the BFKL Pomeron and the CGC/saturation approach. We construct an eikonal-type model, whose opacity is determined by the exchange of the dressed BFKL Pomer on. The Greens function of the Pomeron is calculated in the framework of the CGC/saturation approach. Using five parameters we achieve a good description of the experimental data at high energies ( $W,geq,0.546,TeV$). The model results in different behaviour for the single and double diffraction cross sections at high energies. The single diffraction cross section reaches a saturated value (about 10 mb) at high energies, while the double diffraction cross section continues growing slowly
59 - E. Gotsman 2016
In the framework of our model of soft interactions at high energy based on CGC/saturation approach,we show that Bose-Einstein correlations of identical gluons lead to large values of $v_n$. We demonstrate how three dimensional scales of high energy i nteractions: hadron radius, typical size of the wave function in diffractive production of small masses (size of the constituent quark), and the saturation momentum, influence the values of BE correlations, and in particular, the values of $v_n$. Our calculation shows that the structure of the `dressed Pomeron leads to values of $v_n$ which are close to experimental values for proton-proton scattering, 20% smaller than the observed values for proton-lead collisions, and close to lead-lead collisions for 0-10% centrality. Bearing this result in mind, we conclude that it is premature to consider, that the appearance of long range rapidity azimuthal correlations are due only to the hydrodynamical behaviour of the quark-gluon plasma.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا