ﻻ يوجد ملخص باللغة العربية
Data traffic over cellular networks is exhibiting an ongoing exponential growth, increasing by an order of magnitude every year and has already surpassed voice traffic. This increase in data traffic demand has led to a need for solutions to enhance capacity provision, whereby traffic offloading to Wi-Fi is one means that can enhance realised capacity. Though offloading to Wi-Fi networks has matured over the years, a number of challenges are still being faced by operators to its realization. In this article, we carry out a survey of the practical challenges faced by operators in data traffic offloading to Wi-Fi networks. We also provide recommendations to successfully address these challenges.
We unveil the existence of a vulnerability in Wi-Fi, which allows an adversary to remotely launch a Denial-of-Service (DoS) attack that propagates both in time and space. This vulnerability stems from a coupling effect induced by hidden nodes. Cascad
Ultra Reliable Low Latency Communications (URLLC) is an important challenge for the next generation wireless networks, which poses very strict requirements to the delay and packet loss ratio. Satisfaction is hardly possible without introducing additi
We show experimentally that workload-based AP-STA associations can improve system throughput significantly. We present a predictive model that guides optimal resource allocations in dense Wi-Fi networks and achieves 72-77% of the optimal throughput w
Time-of-flight, i.e., the time incurred by a signal to travel from transmitter to receiver, is perhaps the most intuitive way to measure distances using wireless signals. It is used in major positioning systems such as GPS, RADAR, and SONAR. However,
To address 5G challenges, IEEE 802.11 is currently developing new amendments to the Wi-Fi standard, the most promising of which is 802.11ax. A key scenario considered by the developers of this amendment is dense and overlapped networks typically pres