ﻻ يوجد ملخص باللغة العربية
Over the past several years the STAR experiment at RHIC has been contributing to our understanding of the proton structure. Through its instrumentation, STAR is well equipped to measure $W rightarrow u + e$ in $sqrt{s}$ = 500/510 GeV proton-proton collisions at mid-rapidity (-1.1 $le eta le $ 1.1) . The $W$ cross section ratio ($W^+/W^-$) is sensitive to unpolarized $u$, $d$, $bar{u}$, and $bar{d}$ quark distributions. At these kinematics, STAR is able to measure the quark distributions near Bjorken-$x$ values of 0.1. The RHIC runs in 2011, 2012 and 2013 at $sqrt{s}$ = 500/510 GeV saw a significant increase in delivered luminosity from previous years. This resulted in a total data sample being collected of about 352 pb$^{-1}$ of integrated luminosity. The increased statistics will lead to a higher precision measurement of the $W^+/W^-$ cross section ratio than was previously measured by STARs 2009 run, as well as allow for a measurement of its $eta$ dependence at mid-rapidity. Presented here is an update of the $W$ cross section ratio analysis from the STAR 2011, 2012 and 2013 runs.
Over the past several years, parton distribution functions (PDFs) have become more precise. However there are still kinematic regions where more data are needed to help constrain global PDF extractions, such as the ratio of the sea quark distribution
Over the past several years, parton distribution functions (PDFs) have become more precise. However there are still kinematic regions where more data are needed to help constrain global PDF extractions, such as the sea quark distributions $bar{d}$/$b
The sea quark contribution to the nucleon spin is an important piece for a complete understanding of the nucleon spin structure. The production of $W$ bosons in longitudinally polarized $p + p$ collisions at RHIC provides an unique probe for the sea
One of the primary goals of the spin program at the Relativistic Heavy Ion Collider (RHIC) is to determine the polarization of the sea quarks and gluons in the proton. The polarization of the sea quarks is probed through the production of $W^{-(+)}$
We use the meson cloud model to calculate $bar{d}(x) - bar{u}(x)$ and $ bar{d}(x)/bar{u}(x)$ in the proton. We show that a modification of the symmetric, perturbative part of the light quark sea provides better agreement with the ratio $ bar{d}(x)/bar{u}(x).