ﻻ يوجد ملخص باللغة العربية
Understanding cell-fate decisions during tumorigenesis and metastasis is a major challenge in modern cancer biology. One canonical cell-fate decision that cancer cells undergo is Epithelial-to-Mesenchymal Transition (EMT) and its reverse Mesenchymal-to-Epithelial Transition (MET). While transitioning between these two phenotypes - epithelial and mesenchymal - cells can also attain a hybrid epithelial/mesenchymal (i.e. partial or intermediate EMT) phenotype. Cells in this phenotype have mixed epithelial (e.g. adhesion) and mesenchymal (e.g. migration) properties, thereby allowing them to move collectively as clusters of Circulating Tumor Cells (CTCs). If these clusters enter the circulation, they can be more apoptosis-resistant and more capable of initiating metastatic lesions than cancer cells moving individually with wholly mesenchymal phenotypes, having undergo a complete EMT. Here, we review the operating principles of the core regulatory network for EMT/MET that acts as a three-way switch giving rise to three distinct phenotypes - epithelial, mesenchymal and hybrid epithelial/mesenchymal. We further characterize this hybrid E/M phenotype in terms of its capabilities in terms of collective cell migration, tumor-initiation, cell-cell communication, and drug resistance. We elucidate how the highly interconnected coupling between these modules coordinates cell-fate decisions among a population of cancer cells in the dynamic tumor, hence facilitating tumor-stoma interactions, formation of CTC clusters, and consequently cancer metastasis. Finally, we discuss the multiple advantages that the hybrid epithelial/mesenchymal phenotype have as compared to a complete EMT phenotype and argue that these collectively migrating cells are the primary bad actors of metastasis.
Cancer cells have the plasticity to adjust their metabolic phenotypes for survival and metastasis. During metastasis, a developmental program known as the epithelial-mesenchymal transition (EMT) plays a critical role. There is extensive cross-talk be
Tumor metastasis is one of the main factors responsible for the high fatality rate of cancer. Metastasis can occur after malignant cells transition from the epithelial phenotype to the mesenchymal phenotype. This transformation allows cells to migrat
Collective cell migration is a hallmark of developmental and patho-physiological states, including wound healing and invasive cancer growth. The integrity of the expanding epithelial sheets can be influenced by extracellular cues, including cell-cell
We have developed a mathematical model of regulation of expression of the Escherichia coli lac operon, and have investigated bistability in its steady-state induction behavior in the absence of external glucose. Numerical analysis of equations descri
We present the epithelial-to-mesenchymal transition (EMT) from two perspectives: experimental/technological and theoretical. We review the state of the current understanding of the regulatory networks that underlie EMT in three physiological contexts