ترغب بنشر مسار تعليمي؟ اضغط هنا

The Origin of Families and $SO(18)$ Grand Unification

155   0   0.0 ( 0 )
 نشر من قبل Yoni BenTov
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We exploit a recent advance in the study of topological superconductors to propose a solution to the family puzzle of particle physics in the context of SO(18) (or more correctly, Spin(18)) grand unification. We argue that Yukawa couplings of intermediate strength may allow the mirror matter and extra families to decouple at arbitrarily high energies. As was clear from the existing literature, we have to go beyond the Higgs mechanism in order to solve the family puzzle. A pattern of symmetry breaking which results in the SU(5) grand unified theory with horizontal or family symmetry USp(4) = Spin(5) (or more loosely, SO(5)) leaves exactly three light families of matter and seems particularly appealing. We comment briefly on an alternative scheme involving discrete non-abelian family symmetries. In a few lengthy appendices we review some of the pertinent condensed matter theory.



قيم البحث

اقرأ أيضاً

75 - K.S. Babu 2006
We present a new possibility for achieving doublet-triplet splitting naturally in supersymmetric SO(10) grand unified theories. It is based on a missing partner mechanism which is realized with the 126 + 126-bar Higgs superfields. These Higgs fields, which are also needed for generating Majorana right-handed neutrino masses, contain a pair of color triplets in excess of weak doublets. This feature enables us to remove the color triplets from the low energy spectrum without fine-tuning. We give all the needed ingredients for a successful implementation of the missing partner mechanism in SO(10) and present explicit models wherein the Higgs doublet mass is protected against possible non-renormalizable corrections to all orders. We also show how realistic fermion masses can be generated in this context.
If a grand-unified extension of the asymptotically safe Reuter fixed-point for quantum gravity exists, it determines free parameters of the grand-unified scalar potential. All quartic couplings take their fixed-point values in the trans-Planckian reg ime. They are irrelevant parameters that are, in principle, computable for a given particle content of the grand unified model. In turn, the direction of spontaneous breaking of the grand-unified gauge symmetry becomes predictable. For the flow of the couplings below the Planck mass, gauge and Yukawa interactions compete for the determination of the minimum of the effective potential.
243 - Sibo Zheng 2017
We apply the perturbative grand unification due to renormalization to distinguish TeV-scale relics of supersymmetric $rm{SO}(10)$ scenarios. With rational theoretical constraints taken into account, we find that for the breaking pattern of either $rm {SU}(5)$ or Pati-Salam only extra matter $mathbf{16}$ supermultiplet of $SO(10)$ can appear at TeV scale, apart from MSSM spectrum.
The tremendous phenomenological success of the Standard Model (SM) suggests that its flavor structure and gauge interactions may not be arbitrary but should have a fundamental first-principle explanation. In this work, we explore how the basic distin ctive properties of the SM dynamically emerge from a unified New Physics framework tying together both flavour physics and Grand Unified Theory (GUT) concepts. This framework is suggested by the gauge Left-Right-Color-Family Grand Unification under the exceptional $mathrm{E}_8$ symmetry that, via an orbifolding mechanism, yields a supersymmetric chiral GUT containing the SM. Among the most appealing emergent properties of this theory is the Higgs-matter unification with a highly-constrained massless chiral sector featuring two universal Yukawa couplings close to the GUT scale. At the electroweak scale, the minimal SM-like effective field theory limit of this GUT represents a specific flavored three-Higgs doublet model consistent with the observed large hierarchies in the quark mass spectra and mixing already at tree level.
In a class of gauged $U(1)$ extended Standard Models (SMs), the breaking of the $U(1)$ symmetry is not only a source for Majorana masses of right-handed (RH) neutrinos crucial for the seesaw mechanism, but also a source of stochastic gravitational wa ve (GW) background. Such $U(1)$ extended models are well-motivated from the viewpoint of grand unification. In this paper, we discuss a successful ultraviolet completion of a $U(1)$ extended SM by an $SO(10)$ grand unified model through an intermediate step of $SU(5) times U(1)$ unification. With a parameter set that is compatible with the $SO(10)$ grand unification, we find that a first-order phase transition associated with the $U(1)$ symmetry breaking can be strong enough to generate GWs with a detectable size of amplitude. We also find that the resultant GW amplitude reduces and its peak frequency becomes higher as the RH neutrino masses increase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا