ﻻ يوجد ملخص باللغة العربية
We report the realization and characterization using coherent population trapping (CPT) spectroscopy of an octadecyltrichlorosilane (OTS)-coated centimeter-scale Cs vapor cell. The dual-structure of the resonance lineshape, with presence of a narrow structure line at the top of a Doppler-broadened structure, is clearly observed. The linewidth of the narrow resonance is compared to the linewidth of an evacuated Cs cell and of a buffer gas Cs cell of similar size. The Cs-OTS adsorption energy is measured to be (0.42 $pm$ 0.03) eV, leading to a clock frequency shift rate of $2.7times10^{-9}/$K in fractional unit. A hyperfine population lifetime, $T_1$, and a microwave coherence lifetime, $T_2$, of 1.6 and 0.5 ms are reported, corresponding to about 37 and 12 useful bounces, respectively. Atomic-motion induced Ramsey narrowing of dark resonances is observed in Cs-OTS cells by reducing the optical beam diameter. Ramsey CPT fringes are detected using a pulsed CPT interrogation scheme. Potential applications of the Cs-OTS cell to the development of a vapor cell atomic clock are discussed.
We report on a theoretical study and experimental characterization of coherent population trapping (CPT) resonances in buffer gas-filled vapor cells with push-pull optical pumping (PPOP) on Cs D1 line. We point out that the push-pull interaction sche
Vapor cell atomic clocks exhibit reduced frequency stability for averaging time between about one hundred and a few thousand seconds. Here we report a study on the impact of the main parameters on the mid-to-long term instability of a buffer-gas vapo
Coherent population trapping (CPT) is extensively studied for future vapor cell clocks of high frequency stability. In the constructive polarization modulation CPT scheme, a bichromatic laser field with polarization and phase synchronously modulated
We demonstrate a high-performance coherent-population-trapping (CPT) Cs vapor cell atomic clock using the push-pull optical pumping technique (PPOP) in the pulsed regime, allowing the detection of high-contrast and narrow Ramsey-CPT fringes. The impa
We demonstrate a vapor cell atomic clock prototype based on continuous-wave (CW) interrogation and double-modulation coherent population trapping (DM-CPT) technique. The DM-CPT technique uses a synchronous modulation of polarization and relative phas