ترغب بنشر مسار تعليمي؟ اضغط هنا

Longitudinal nonlocality in the string S-matrix

255   0   0.0 ( 0 )
 نشر من قبل Matthew Dodelson
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze four and five-point tree-level open string S-matrix amplitudes in the Regge limit, exhibiting some basic features which indicate longitudinal nonlocality, as suggested by light cone gauge calculations of string spreading. Using wavepackets to localize the asymptotic states, we compute the peak trajectories followed by the incoming and outgoing strings, determined by the phases in the amplitudes. These trajectories trace back in all dimensions such that the incoming strings deflect directly into corresponding outgoing ones, as expected from a Reggeon analysis. Bremsstrahlung radiation at five points emerges from the deflection point, corroborating this picture. An explicit solution for the intermediate state produced at four points in the $s$-channel exists, with endpoints precisely following the corresponding geometry and a periodicity which matches the series of time delays predicted by the amplitude. We find a nonzero peak impact parameter for this process, and show that it admits an interpretation in terms of longitudinal-spreading induced string joining, at the scale expected from light cone calculations, and does not appear to admit a straightforward interpretation purely in terms of the well-established transverse spreading. At five points, we exhibit a regime with advanced emission of one of the deflected outgoing strings. This strongly suggests early interaction induced by longitudinal nonlocality. In a companion paper, we apply string spreading to horizon dynamics.

قيم البحث

اقرأ أيضاً

We study string interactions in the fermionic formulation of the c=1 matrix model. We give a precise nonperturbative description of the rolling tachyon state in the matrix model, and discuss S-matrix elements of the c=1 string. As a first step to stu dy string interactions, we compute the interaction of two decaying D0-branes in terms of free fermions. This computation is compared with the string theory cylinder diagram using the rolling tachyon ZZ boundary states.
The gravitational $mathcal{S}$-matrix defined with an infrared (IR) cutoff factorizes into hard and soft factors. The soft factor is universal and contains all the IR and collinear divergences. Here we show, in a momentum space basis, that the intric ate expression for the soft factor is fully reproduced by two boundary currents, which live on the celestial sphere. The first of these is the supertranslation current, which generates spacetime supertranslations. The second is its symplectic partner, the Goldstone current for spontaneously broken supertranslations. The current algebra has an off-diagonal level structure involving the gravitational cusp anomalous dimension and the logarithm of the IR cutoff. It is further shown that the gravitational memory effect is contained as an IR safe observable within the soft $mathcal{S}$-matrix.
The Swampland de Sitter conjecture in combination with upper limits on the tensor-to-scalar ratio $r$ derived from observations of the cosmic microwave background endangers the paradigm of slow-roll single field inflation. This conjecture constrains the first and the second derivatives of the inflationary potential in terms of two ${cal O} (1)$ constants $c$ and $c$. In view of these restrictions we reexamine single-field inflationary potentials with $S$-duality symmetry, which ameliorate the unlikeliness problem of the initial condition. We compute $r$ at next-to-leading order in slow-roll parameters for the most general form of $S$-dual potentials and confront model predictions to constraints imposed by the de Sitter conjecture. We find that $c sim {cal O} (10^{-1})$ and $c sim {cal O} (10^{-2})$ can accommodate the 95% CL upper limit on $r$. By imposing at least 50 $e$-folds of inflation with the effective field theory description only valid over a field displacement ${cal O} (1)$ when measured as a distance in the target space geometry, we further restrict $c sim {cal O} (10^{-2})$, while the constraint on $c$ remains unchanged. We comment on how to accommodate the required small values of $c$ and $c$.
The behaviour of matrix string theory in the background of a type IIA pp wave at small string coupling, g_s << 1, is determined by the combination M g_s where M is a dimensionless parameter proportional to the strength of the Ramond-Ramond background . For M g_s << 1, the matrix string theory is conventional; only the degrees of freedom in the Cartan subalgebra contribute, and the theory reduces to copies of the perturbative string. For M g_s >> 1, the theory admits degenerate vacua representing fundamental strings blown up into fuzzy spheres with nonzero lightcone momenta. We determine the spectrum of small fluctuations around these vacua. Around such a vacuum all N-squared degrees of freedom are excited with comparable energies. The spectrum of masses has a spacing which is independent of the radius of the fuzzy sphere, in agreement with expected behaviour of continuum giant gravitons. Furthermore, for fuzzy spheres characterized by reducible representations of SU(2) and vanishing Wilson lines, the boundary conditions on the field are characterized by a set of continuous angles which shows that generically the blown up strings do not ``close.
Recently Sekino and Yoneya proposed a way to regularize the world volume theory of membranes wrapped around $S^1$ by matrices and showed that one obtains matrix string theory as a regularization of such a theory. We show that this correspondence betw een matrix string theory and wrapped membranes can be obtained by using the usual M(atrix) theory techniques. Using this correspondence, we construct the super-Poincare generators of matrix string theory at the leading order in the perturbation theory. It is shown that these generators satisfy 10 dimensional super-Poincare algebra without any anomaly.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا