ترغب بنشر مسار تعليمي؟ اضغط هنا

PIC simulation study of the interaction between a relativistically moving leptonic micro-cloud and ambient electrons

106   0   0.0 ( 0 )
 نشر من قبل Mark Dieckmann
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The jets of compact accreting objects are composed of electrons and a mixture of positrons and ions. These outflows impinge on the interstellar or intergalactic medium and both plasmas interact via collisionless processes. Filamentation (beam-Weibel) instabilities give rise to the growth of strong electromagnetic fields. These fields thermalize the interpenetrating plasmas. Hitherto, the effects imposed by a spatial non-uniformity on filamentation instabilities have remained unexplored. We examine the interaction between spatially uniform background electrons and a minuscule cloud of electrons and positrons. A square micro-cloud of equally dense electrons and positrons impinges in our particle-in-cell (PIC) simulation on a spatially uniform plasma at rest. The mean speed of the micro-cloud corresponds to a relativistic factor of 15, which is relevant for laboratory experiments and for relativistic astrophysical outflows. The spatial distributions of the leptons and of the electromagnetic fields are examined at several times. A filamentation instability develops between the magnetic field carried by the micro-cloud and the background electrons. The electromagnetic fields, which grow from noise levels, redistribute the electrons and positrons within the cloud, which boosts the peak magnetic field amplitude. The current density and the moduli of the electromagnetic fields grow aperiodically in time and steadily along the direction that is anti-parallel to the clouds velocity vector. The micro-cloud remains conjoined during the simulation. The instability induces an electrostatic wakefield in the background plasma.



قيم البحث

اقرأ أيضاً

Particle acceleration in collisionless plasma systems is a central question in astroplasma and astroparticle physics. The structure of the acceleration regions, electron-ion energy equilibration, preacceleration of particles at shocks to permit furth er energization by diffusive shock acceleration, require knowledge of the distribution function of particles besides the structure and dynamic of electromagnetic fields, and hence a kinetic description is desirable. Particle-in-cell simulations offer an appropriate, if computationally expensive method of essentially conducting numerical experiments that explore kinetic phenomena in collisionless plasma. We review recent results of PIC simulations of astrophysical plasma systems, particle acceleration, and the instabilities that shape them.
141 - Xinlu Xu , Fei Li , Frank S. Tsung 2019
The particle-in-cell (PIC) method is widely used to model the self-consistent interaction between discrete particles and electromagnetic fields. It has been successfully applied to problems across plasma physics including plasma based acceleration, i nertial confinement fusion, magnetically confined fusion, space physics, astrophysics, high energy density plasmas. In many cases the physics involves how relativistic particles are generated and interact with plasmas. However, when relativistic particles stream across the grid both in vacuum and in plasma there are many numerical issues that may arise which can lead to incorrect physics. We present a detailed analysis of how discretized Maxwell solvers used in PIC codes can lead to numerical errors to the fields that surround particles that move at relativistic speeds across the grid. Expressions for the axial electric field as integrals in k space are presented. Two types of errors to these expressions are identified. The first arises from errors to the numerator of the integrand and leads to unphysical fields that are antisymmetric about the particle. The second arises from errors to the denominator of the integrand and lead to Cerenkov like radiation in vacuum. These fields are not anti-symmetric, extend behind the particle, and cause the particle to accelerate or decelerate depending on the solver and parameters. The unphysical fields are studied in detail for two representative solvers - the Yee solver and the FFT based solver. A solution for eliminating these unphysical fields by modifying the k operator in the axial direction is also presented. Using a customized finite difference solver, this solution was successfully implemented into OSIRIS. Results from the customized solver are also presented. This solution will be useful for a beam of particles that all move in one direction with a small angular divergence.
Latest study reports that plasma emission can be generated by energetic electrons of DGH distribution via the electron cyclotron maser instability (ECMI) in plasmas characterized by a large ratio of plasma oscillation frequency to electron gyro-frequ ency ($omega_{pe}/Omega_{ce}$). In this study, on the basis of the ECMI-plasma emission mechanism, we examine the double plasma resonance (DPR) effect and the corresponding plasma emission at both harmonic (H) and fundamental (F) bands using PIC simulations with various $omega_{pe}/Omega_{ce}$. This allows us to directly simulate the feature of zebra pattern (ZP) observed in solar radio bursts for the first time. We find that (1) the simulations reproduce the DPR effect nicely for the upper hybrid (UH) and Z modes, as seen from their variation of intensity and linear growth rate with $omega_{pe}/Omega_{ce}$, (2) the intensity of the H emission is stronger than that of the F emission by $sim$ 2 orders of magnitude and vary periodically with increasing $omega_{pe}/Omega_{ce}$, while the F emission is too weak to be significant, therefore we suggest that it is the H emission accounting for solar ZPs, (3) the peak-valley contrast of the total intensity of H is $sim 4$, and the peak lies around integer values of $omega_{pe}/Omega_{ce}$ (= 10 and 11) for the present parameter setup. We also evaluate the effect of energy of energetic electrons on the characteristics of ECMI-excited waves and plasma radiation. The study provides novel insight on the physical origin of ZPs of solar radio bursts.
393 - Ming Xiong 2009
Numerical studies have been performed to interpret the observed shock overtaking magnetic cloud (MC) event by a 2.5 dimensional magnetohydrodynamic (MHD) model in heliospheric meridional plane. Results of an individual MC simulation show that the MC travels with a constant bulk flow speed. The MC is injected with very strong inherent magnetic field over that in the ambient flow and expands rapidly in size initially. Consequently, the diameter of MC increases in an asymptotic speed while its angular width contracts gradually. Meanwhile, simulations of MC-shock interaction are also presented, in which both a typical MC and a strong fast shock emerge from the inner boundary and propagate along heliospheric equator, separated by an appropriate interval. The results show that the shock firstly catches up with the preceding MC, then penetrates through the MC, and finally merges with the MC-driven shock into a stronger compound shock. The morphologies of shock front in interplanetary space and MC body behave as a central concave and a smooth arc respectively. The compression and rotation of magnetic field serve as an efficient mechanism to cause a large geomagnetic storm. The MC is highly compressed by the the overtaking shock. Contrarily, the transport time of incidental shock influenced by the MC depends on the interval between their commencements. Maximum geoeffectiveness results from that when the shock enters the core of preceding MC, which is also substantiated to some extent by a corresponding simplified analytic model. Quantified by $Dst$ index, the specific result gives that the geoeffectiveness of an individual MC is largely enhanced with 80% increment in maximum by an incidental shock.
Phase space holes, double layers and other solitary electric field structures, referred to as time domain structures (TDSs), often occur around dipolarization fronts in the Earths inner magnetosphere. They are considered to be important because of th eir role in the dissipation of the injection energy and their potential for significant particle scattering and acceleration. Kinetic Alfven waves are observed to be excited during energetic particle injections, and are typically present in conjunction with TDS observations. Despite the availability of a large number of spacecraft observations, the origin of TDSs and their relation to kinetic Alfven waves remains poorly understood to date. Part of the difficulty arises from the vast scale separations between kinetic Alfven waves and TDSs. Here, we demonstrate that TDSs can be excited by electrons in nonlinear Landau resonance with kinetic Alfven waves. These electrons get trapped by the parallel electric field of kinetic Alfven waves, form localized beam distributions, and subsequently generate TDSs through beam instabilities. A big picture emerges as follows: macroscale dipolarization fronts first transfer the ion flow (kinetic) energy to kinetic Alfven waves at intermediate scale, which further channel the energy to TDSs at the microscale and eventually deposit the energy to the thermal electrons in the form of heating. In this way, the ion flow energy associated with dipolarization fronts is effectively dissipated in a cascade from large to small scales in the inner magnetosphere.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا