ﻻ يوجد ملخص باللغة العربية
The jets of compact accreting objects are composed of electrons and a mixture of positrons and ions. These outflows impinge on the interstellar or intergalactic medium and both plasmas interact via collisionless processes. Filamentation (beam-Weibel) instabilities give rise to the growth of strong electromagnetic fields. These fields thermalize the interpenetrating plasmas. Hitherto, the effects imposed by a spatial non-uniformity on filamentation instabilities have remained unexplored. We examine the interaction between spatially uniform background electrons and a minuscule cloud of electrons and positrons. A square micro-cloud of equally dense electrons and positrons impinges in our particle-in-cell (PIC) simulation on a spatially uniform plasma at rest. The mean speed of the micro-cloud corresponds to a relativistic factor of 15, which is relevant for laboratory experiments and for relativistic astrophysical outflows. The spatial distributions of the leptons and of the electromagnetic fields are examined at several times. A filamentation instability develops between the magnetic field carried by the micro-cloud and the background electrons. The electromagnetic fields, which grow from noise levels, redistribute the electrons and positrons within the cloud, which boosts the peak magnetic field amplitude. The current density and the moduli of the electromagnetic fields grow aperiodically in time and steadily along the direction that is anti-parallel to the clouds velocity vector. The micro-cloud remains conjoined during the simulation. The instability induces an electrostatic wakefield in the background plasma.
Particle acceleration in collisionless plasma systems is a central question in astroplasma and astroparticle physics. The structure of the acceleration regions, electron-ion energy equilibration, preacceleration of particles at shocks to permit furth
The particle-in-cell (PIC) method is widely used to model the self-consistent interaction between discrete particles and electromagnetic fields. It has been successfully applied to problems across plasma physics including plasma based acceleration, i
Latest study reports that plasma emission can be generated by energetic electrons of DGH distribution via the electron cyclotron maser instability (ECMI) in plasmas characterized by a large ratio of plasma oscillation frequency to electron gyro-frequ
Numerical studies have been performed to interpret the observed shock overtaking magnetic cloud (MC) event by a 2.5 dimensional magnetohydrodynamic (MHD) model in heliospheric meridional plane. Results of an individual MC simulation show that the MC
Phase space holes, double layers and other solitary electric field structures, referred to as time domain structures (TDSs), often occur around dipolarization fronts in the Earths inner magnetosphere. They are considered to be important because of th