ﻻ يوجد ملخص باللغة العربية
We analyze the high-energy neutrino events observed by IceCube, aiming to probe the initial flavor of cosmic neutrinos. We study the track-to-shower ratio of the subset with energy above 60 TeV, where the signal is expected to dominate and show that different production mechanisms give rise to different predictions even accounting for the uncertainties due to neutrino oscillations. We include for the first time the passing muons observed by IceCube in the analysis. They corroborate the hypotheses that cosmic neutrinos have been seen and their flavor matches expectations.
The core mission of the IceCube Neutrino observatory is to study the origin and propagation of cosmic rays. IceCube, with its surface component IceTop, observes multiple signatures to accomplish this mission. Most important are the astrophysical neut
The Telescope Array (TA) has observed a statistically significant excess in cosmic-rays with energies above 57 EeV in a region of approximately 1150 square degrees centered on coordinates (R.A. = 146.7, Dec. = 43.2). We note that the location of this
The IceCube experiment has recently released 3 years of data of the first ever detected high-energy (>30 TeV) neutrinos, which are consistent with an extraterrestrial origin. In this talk, we compute the compatibility of the observed track-to-shower
We present a flavor and energy inference analysis for each high-energy neutrino event observed by the IceCube observatory during six years of data taking. Our goal is to obtain, for the first time, an estimate of the posterior probability distributio
A diffuse flux of astrophysical neutrinos above $100,mathrm{TeV}$ has been observed at the IceCube Neutrino Observatory. Here we extend this analysis to probe the astrophysical flux down to $35,mathrm{TeV}$ and analyze its flavor composition by class