ترغب بنشر مسار تعليمي؟ اضغط هنا

Linear magneto-resistance versus weak antilocalization effects in Bi$_2$Te$_3$ films

120   0   0.0 ( 0 )
 نشر من قبل Xuan Gao
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In chalcogenide topological insulator materials, two types of magneto-resistance (MR) effects are widely discussed: a positive MR dip around zero magnetic field associated with the weak antilocalization (WAL) effect and a linear MR effect which generally persists to high fields and high temperatures. We have studied the MR of topological insulator Bi2Te3 films from the metallic to semiconducting transport regime. While in metallic samples, the WAL is difficult to identify due to the smallness of the WAL compared to the samples conductivity, the sharp WAL dip in the MR is clearly present in the samples with higher resistivity. To correctly account for the low field MR by the quantitative theory of WAL according to the Hikami-Larkin-Nagaoka (HLN) model, we find that the classical (linear) MR effect should be separated from the WAL quantum correction. Otherwise the WAL fitting alone yields an unrealistically large coefficient $alpha$ in the HLN analysis.



قيم البحث

اقرأ أيضاً

Here we report on Landau level spectroscopy in magnetic fields up to 34 T performed on a thin film of topological insulator Bi$_2$Te$_3$ epitaxially grown on a BaF$_2$ substrate. The observed response is consistent with the picture of a direct-gap se miconductor in which charge carriers closely resemble massive Dirac particles. The fundamental band gap reaches $E_g=(175pm 5)$~meV at low temperatures and it is not located on the trigonal axis, thus displaying either six or twelvefold valley degeneracy. Notably, our magneto-optical data do not indicate any band inversion. This suggests that the fundamental band gap is relatively distant from the $Gamma$ point where profound inversion exists andgives rise to relativistic-like surface states of Bi$_2$Te$_3$.
Recently, it has been theoretically predicted that Cd3As2 is a three dimensional Dirac material, a new topological phase discovered after topological insulators, which exhibits a linear energy dispersion in the bulk with massless Dirac fermions. Here , we report on the low-temperature magnetoresistance measurements on a ~50nm-thick Cd3As2 film. The weak antilocalization under perpendicular magnetic field is discussed based on the two-dimensional Hikami-Larkin-Nagaoka (HLN) theory. The electron-electron interaction is addressed as the source of the dephasing based on the temperature-dependent scaling behavior. The weak antilocalization can be also observed while the magnetic field is parallel to the electric field due to the strong interaction between the different conductance channels in this quasi-two-dimensional film.
Combining the ability to prepare high-quality, intrinsic Bi$_2$Te$_3$ topological insulator thin films of low carrier density with in-situ protective capping, we demonstrate a pronounced, gate-tunable change in transport properties of Bi$_2$Te$_3$ th in films. Using a back-gate, the carrier density is tuned by a factor of $sim 7$ in Al$_2$O$_3$ capped Bi$_2$Te$_3$ sample and by a factor of $sim 2$ in Te capped Bi$_2$Te$_3$ films. We achieve full depletion of bulk carriers, which allows us to access the topological transport regime dominated by surface state conduction. When the Fermi level is placed in the bulk band gap, we observe the presence of two coherent conduction channels associated with the two decoupled surfaces. Our magnetotransport results show that the combination of capping layers and electrostatic tuning of the Fermi level provide a technological platform to investigate the topological properties of surface states in transport experiments and pave the way towards the implementation of a variety of topological quantum devices.
We study disorder induced topological phase transitions in magnetically doped (Bi, Sb)$_2$Te$_3$ thin films, by using large scale transport simulations of the conductance through a disordered region coupled to reservoirs in the quantum spin Hall regi me. Besides the disorder strength, the rich phase diagram also strongly depends on the magnetic exchange field, the Fermi level, and the initial topological state in the undoped and clean limit of the films. In an initially trivial system at non-zero exchange field, varying the disorder strength can induce a sequence of transitions from a normal insulating, to a quantum anomalous Hall, then a spin-Chern insulating, and finally an Anderson insulating state. While for a system with topology initially, a similar sequence, but only starting from the quantum anomalous Hall state, can be induced. Varying the Fermi level we find a similarly rich phase diagram, including transitions from the quantum anomalous Hall to the spin-Chern insulating state via a state that behaves as a mixture of a quantum anomalous Hall and a metallic state, akin to recent experimental reports.
We have investigated the weak antilocalization (WAL) effect in the p-type Bi$_2$Se$_{2.1}$Te$_{0.9}$ topological system. The magnetoconductance shows a cusp-like feature at low magnetic fields, indicating the presence of the WAL effect. The WAL curve s measured at different tilt angles merge together when they are plotted as a function of the normal field components, showing that surface states dominate the magnetoconductance in the Bi$_2$Se$_{2.1}$Te$_{0.9}$ crystal. We have calculated magnetoconductance per conduction channel and applied the Hikami-Larkin-Nagaoka formula to determine the physical parameters that characterize the WAL effect. The number of conduction channels and the phase coherence length do not change with temperature up to T=5 K. In addition, the sample shows a large positive magnetoresistance that reaches 1900% under a magnetic field of 35 T at T=0.33K with no sign of saturation. The magnetoresistance value decreases with both increasing temperature and tilt angle of the sample surface with respect to the magnetic field. The large magnetoresistance of topological insulators can be utilized in future technology such as sensors and memory devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا