ﻻ يوجد ملخص باللغة العربية
We study real-space quantum entanglement included in conformally invariant boundary states in conformal field theories (CFTs). First, we argue that boundary states essentially have no real-space entanglement by computing the entanglement entropy when we bipartite the system into two spatial regions. From the viewpoint of holography, this shows that boundary states are dual to trivial spacetimes of zero spactime volume. Next, we point out that a continuous multiscale entanglement renormalization ansatz (cMERA) for any CFTs can be formulated by employing a boundary state as its infrared unentangled state with an appropriate regularization. Exploiting this idea, we propose an approximation scheme of cMERA construction for general CFTs.
We formulate a theory of dissipative hydrodynamics with spontaneously broken translations, describing charge density waves in a clean isotropic electronic crystal. We identify a novel linear transport coefficient, lattice pressure, capturing the effe
We extend the holographic duality between 3d pure gravity and the 2d Ising CFT proposed in [Phys. Rev. D 85 (2012) 024032] to CFTs with boundaries. Besides the usual asymptotic boundary, the dual bulk spacetime now has a real cutoff, on which live br
A notable class of superconformal theories (SCFTs) in six dimensions is parameterized by an integer $N$, an ADE group $G$, and two nilpotent elements $mu_mathrm{L,R}$ in $G$. Nilpotent elements have a natural partial ordering, which has been conjectu
In this paper, we study a holographic dual of a confined fermi liquid state by putting a charged fluid of fermions in the AdS soliton geometry. This can be regarded as a confined analogue of electron stars. Depending on the parameters such as the mas
Motivated by the understanding of holography as realized in tensor networks, we develop a bulk procedure that can be interpreted as generating a sequence of coarse-grained holographic states. The coarse-graining procedure involves identifying degrees