ﻻ يوجد ملخص باللغة العربية
We report high resolution Angle Resolved PhotoElectron Spectroscopy (ARPES) results on the (001) cleavage surface of YbB$_{6}$, a rare-earth compound which has been recently predicted to host surface electronic states with topological character. We observe two types of well-resolved metallic states, whose Fermi contours encircle the time-reversal invariant momenta of the YbB$_{6}$(001) surface Brillouin zone, and whose full (E,$k$)-dispersion relation can be measured wholly unmasked by states from the rest of the electronic structure. Although the two-dimensional character of these metallic states is confirmed by their lack of out-of-plane dispersion, two new aspects are revealed in these experiments. Firstly, these states do not resemble two branches of opposite, linear velocity that cross at a Dirac point, but rather straightforward parabolas which terminate to high binding energy with a clear band bottom. Secondly, these states are sensitive to time-dependent changes of the YbB$_{6}$ surface under ultrahigh vacuum conditions. Adding the fact that these data from cleaved YbB$_{6}$ surfaces also display spatial variations in the electronic structure, it appears there is little in common between the theoretical expectations for an idealized YbB$_{6}$(001) crystal truncation on the one hand, and these ARPES data from real cleavage surfaces on the other.
Soft X-ray Angle-Resolved Photoemission Spectroscopy is applied to study in-plane band dispersions of Nickel as a function of probing depth. Photon energies between 190 and 780 eV were used to effectively probe up to 3-7 layers. The results show laye
Recently, angle-resolved photoemission spectroscopy has been used to highlight an anomalously large band renormalization at high binding energies in cuprate superconductors: the high energy waterfall or high energy anomaly (HEA). The anomaly is prese
Anomalous magnetic and electronic properties of the half-metallic ferromagnets (HMF) have been discussed. The general conception of the HMF electronic structure which take into account the most important correlation effects from electron-magnon inter
By means of muon spin spectroscopy, we have found that K$_{0.49}$CoO$_2$ crystals undergo successive magnetic transitions from a high-T paramagnetic state to a magnetic ordered state below 60 K and then to a second ordered state below 16 K, even thou
We calculate Raman response functions on the Fermi surface in metallic cuprates.