ترغب بنشر مسار تعليمي؟ اضغط هنا

The quiescent state of the accreting X-ray pulsar SAX J2103.5+4545

158   0   0.0 ( 0 )
 نشر من قبل Pablo Reig
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف P. Reig




اسأل ChatGPT حول البحث

We present an X-ray timing and spectral analysis of the Be/X-ray binary SAX J2103.5+4545 at a time when the Be stars circumstellar disk had disappeared and thus the main reservoir of material available for accretion had extinguished. In this very low optical state, pulsed X-ray emission was detected at a level of L_X~10^{33} erg/s. This is the lowest luminosity at which pulsations have ever been detected in an accreting pulsar. The derived spin period is 351.13 s, consistent with previous observations. The source continues its overall long-term spin-up, which reduced the spin period by 7.5 s since its discovery in 1997. The X-ray emission is consistent with a purely thermal spectrum, represented by a blackbody with kT=1 keV. We discuss possible scenarios to explain the observed quiescent luminosity and conclude that the most likely mechanism is direct emission resulting from the cooling of the polar caps, heated either during the most recent outburst or via intermittent accretion in quiescence.



قيم البحث

اقرأ أيضاً

70 - E. V. Filippova 2004
We investigated the optical, X-ray, and gamma-ray variability of the pulsar SAX J2103.5+4545. Our timing and spectral analyses of the X-ray and gamma-ray emissions from the source using RXTE and INTEGRAL data show that the shape of its spectrum in th e energy range 3 -- 100 keV is virtually independent of its intensity and the orbital phase. Based on XMM-Newton data, we accurately (5 arcsec) localized the object and determined the optical counterpart in the binary. We placed upper limits on the variability of the latter in the R band and the H-alpha line on time scales of the orbital and pulse periods, respectively.
Aims. We present the first long-term pulse profile study of the X-ray pulsar SAX J2103.5+4545. Our main goal is to study the pulse shape correlation either with luminosity, time or energy. Methods. This Be/X-ray binary system was observed from 1999 to 2004 by RXTE PCA, and by INTEGRAL from 2002 to 2005, during the Performance and Verification (PV) phase and the Galactic Plane Scan survey (GPS). X-ray pulse profiles were obtained in different energy ranges. The long-term spectral variability of this source is studied. The long-term flux, frequency and spin-up rate histories are computed. A new set of orbital parameters are also determined. Results. The pulse shape is complex and highly variable either with time or luminosity. However, an energy dependence pattern was found. Single, double, triple or even quadruple peaks pulse profile structure was obtained. It was confirmed that SAX J2103.5+4545 becomes harder when the flux is higher. The new orbital solution obtained is: P_orb= 12.66528+-0.00051 days, e = 0.401+-0.018, w = 241.36+-2.18 and a_xsin i = 80.81+-0.67 lt-s.
We present an X-ray spectral and timing analysis of two $NuSTAR$ observations of the transient Be X-ray binary SAX J2103.5+4545 during its April 2016 outburst, which was characterized by the highest flux since $NuSTAR$s launch. These observations pro vide detailed hard X-ray spectra of this source during its bright precursor flare and subsequent fainter regular outburst for the first time. In this work, we model the phase-averaged spectra for these observations with a negative and positive power law with an exponential cut-off (NPEX) model and compare the pulse profiles at different flux states. We found that the broad-band pulse profile changes from a three peaked pulse in the first observation to a two peaked pulse in the second observation, and that each of the pulse peaks has some energy dependence. We also perform pulse-phase spectroscopy and fit phase-resolved spectra with NPEX to evaluate how spectral parameters change with pulse phase. We find that while the continuum parameters are mostly constant with pulse phase, a weak absorption feature at ~12 keV that might, with further study, be classified as a cyclotron line, does show strong pulse phase dependence.
SAX J2103.5+4545 is the Be/X-ray binary with the shortest orbital period. It shows extended bright and faint X-ray states that last for a few hundred days. The main objective of this work is to investigate the relationship between the X-ray and optic al variability and to characterise the spectral and timing properties of the bright and faint states. We have found a correlation between the spectral and temporal parameters that fit the energy and power spectra. Softer energy spectra correspond to softer power spectra. That is to say, when the energy spectrum is soft the power at high frequencies is suppressed. We also present the results of our monitoring of the Halpha line of the optical counterpart since its discovery in 2003. There is a correlation between the strength and shape of the Halpha line, originated in the circumstellar envelope of the massive companion and the X-ray emission from the vicinity of the neutron star. Halpha emission, indicative of an equatorial disc around the B-type star, is detected whenever the source is bright in X-rays. When the disc is absent, the X-ray emission decreases significantly. The long-term variability of SAX J2103.5+4545 is characterised by fast episodes of disc loss and subsequent reformation. The time scales for the loss and reformation of the disc (about 2 years) are the fastest among Be/X-ray binaries.
We present an INTEGRAL data analysis of the X-ray transient object{SAX J2103.5+4545} during two outbursts detected in December 2002. The INTEGRAL coordinates and error circle agree with the position of the recently proposed optical counterpart. A pow er-law plus cut-off model provided a good fit to the 4-150 keV spectrum yielding a photon index of 1.0+-0.1, a cut-off energy E_cut=7.6+-2.0 keV and a folding energy E_fold=30.9+-2.5 keV. The X-ray luminosity in the 4-150 keV energy range was found to be 6.0x10^36 erg/s, assuming a distance of 6.5 kpc. This luminosity, together with the derived photon index, indicate that the source is in a bright state. A 354.9$+-0.5 second pulse period is measured. This value is significantly smaller than previous measurements, indicating a long-term spin-up episode.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا