ﻻ يوجد ملخص باللغة العربية
The electronic structure of organic-inorganic interfaces often feature resonances originating from discrete molecular orbitals coupled to continuum lead states. An example are molecular junctions, individual molecules bridging electrodes, where the shape and peak energy of such resonances dictate junction conductance, thermopower, I-V characteristics and related transport properties. In molecular junctions where off-resonance coherent tunneling dominates transport, resonance peaks in the transmission function are often assumed to be Lorentzian functions with an energy-independent broadening parameter $Gamma$. Here we define a new energy-dependent resonance broadening function, $Gamma(E)$, based on diagonalization of non-Hermitian matrices, which can describe resonances of a more complex, non-Lorentzian nature and can be decomposed into components associated with the left and right lead, respectively. We compute this quantity via an emph{ab initio} non-equilibrium Greens function approach based on density functional theory for both symmetric and asymmetric molecular junctions, and show that our definition of $Gamma(E)$, when combined with Breit-Wigner formula, reproduces the transmission calculated from DFT-NEGF. Through a series of examples, we illustrate how this approach can shed new light on experiments and understanding of junction transport properties in terms of molecular orbitals.
We present a novel ab initio non-equilibrium approach to calculate the current across a molecular junction. The method rests on a wave function based full ab initio description of the central region of the junction combined with a tight binding appro
We present a novel ab initio non-equilibrium approach to calculate the current across a molecular junction. The method rests on a wave function based description of the central region of the junction combined with a tight binding approximation for th
We extend the ab initio molecular dynamics (AIMD) method based on density functional theory to the nonequilibrium situation where an electronic current is present in the electronic system. The dynamics is treated using the semi-classical generalized
In this work, an analytic model is proposed which provides in a continuous manner the current-voltage characteristic (I-V) of high performance tunneling field-effect transistors (TFETs) based on direct bandgap semiconductors. The model provides close
We perform on-the-fly non-adiabatic molecular dynamics simulations using the symmetrical quasi-classical (SQC) approach with the recently suggested molecular Tully models: ethylene and fulvene. We attempt to provide benchmarks of the SQC methods usin