ترغب بنشر مسار تعليمي؟ اضغط هنا

Tidal radii and destruction rates of globular clusters in the Milky Way due to bulge-bar and disk shocking

101   0   0.0 ( 0 )
 نشر من قبل Barbara Pichardo
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We calculate orbits, tidal radii, and bulge-bar and disk shocking destruction rates for 63 globular clusters in our Galaxy. Orbits are integrated in both an axisymmetric and a non-axisymmetric Galactic potential that includes a bar and a 3D model for the spiral arms. With the use of a Monte Carlo scheme, we consider in our simulations observational uncertainties in the kinematical data of the clusters. In the analysis of destruction rates due to the bulge-bar, we consider the rigorous treatment of using the real Galactic cluster orbit, instead of the usual linear trajectory employed in previous studies. We compare results in both treatments. We find that the theoretical tidal radius computed in the nonaxisymmetric Galactic potential compares better with the observed tidal radius than that obtained in the axisymmetric potential. In both Galactic potentials, bulge-shocking destruction rates computed with a linear trajectory of a cluster at its perigalacticons give a good approximation to the result obtained with the real trajectory of the cluster. Bulge-shocking destruction rates for clusters with perigalacticons in the inner Galactic region are smaller in the non-axisymmetric potential, as compared with those in the axisymmetric potential. For the majority of clusters with high orbital eccentricities (e > 0.5), their total bulge+disk destruction rates are smaller in the non-axisymmetric potential.

قيم البحث

اقرأ أيضاً

We report on the extent of the effects of the Milky Ways gravitational field in shaping the structural parameters and internal dynamics of its globular cluster population. We make use of a homogeneous, up-to-date data set with kinematics, structural properties, current and initial masses of 156 globular clusters. In general, cluster radii increase as the Milky Way potential weakens; with the core and Jacobi radii being those which increase at the slowest and fastest rate respectively. We interpret this result as the innermost regions of globular clusters being less sensitive to changes in the tidal forces with the Galactocentric distance. The Milky Ways gravitational field also seems to have differentially accelerated the internal dynamical evolution of individual clusters, with those toward the bulge appearing dynamically older. Finally we find a sub-population consisting of both compact and extended globular clusters (as defined by their rh/rJ ratio) beyond 8 kpc that appear to have lost a large fraction of their initial mass lost via disruption. Moreover, we identify a third group with rh/rJ > 0.4, which have lost an even larger fraction of their initial mass by disruption. In both cases the high fraction of mass lost is likely due to their large orbital eccentricities and inclination angles, which lead to them experiencing more tidal shocks at perigalacticon and during disc crossings. Comparing the structural and orbital parameters of individual clusters allows for constraints to be placed on whether or not their evolution was relaxation or tidally dominated.
We use the extensive $Gaia$ Data Release 2 set of Long Period Variables to select a sample of Oxygen-rich Miras throughout the Milky Way disk and bulge for study. Exploiting the relation between Mira pulsation period and stellar age/chemistry, we sli ce the stellar density of the Galactic disk and bulge as a function of period. We find the morphology of both components evolves as a function of stellar age/chemistry with the stellar disk being stubby at old ages, becoming progressively thinner and more radially extended at younger stellar ages, consistent with the picture of inside-out and upside-down formation of the Milky Ways disk. We see evidence of a perturbed disk, with large-scale stellar over-densities visible both in and away from the stellar plane. We find the bulge is well modelled by a triaxial boxy distribution with an axis ratio of $sim [1:0.4:0.3]$. The oldest of the Miras ($sim$ 9-10 Gyr) show little bar-like morphology, whilst the younger stars appear inclined at a viewing angle of $sim 21^{circ}$ to the Sun-Galactic Centre line. This suggests that bar formation and buckling took place 8-9 Gyr ago, with the older Miras being hot enough to avoid being trapped by the growing bar. We find the youngest Miras to exhibit a strong peanut morphology, bearing the characteristic X-shape of an inclined bar structure.
147 - F. Gran , M. Zoccali , I. Saviane 2021
Recent wide-area surveys have enabled us to study the Milky Way with unprecedented detail. Its inner regions, hidden behind dust and gas, have been partially unveiled with the arrival of near-IR photometric and spectroscopic datasets. Among recent di scoveries, there is a population of low-mass globular clusters, known to be missing, especially towards the Galactic bulge. In this work, five new low-luminosity globular clusters located towards the bulge area are presented. They were discovered by searching for groups in the multi-dimensional space of coordinates, colours, and proper motions from the Gaia EDR3 catalogue and later confirmed with deeper VVV survey near-IR photometry. The clusters show well-defined red-giant branches and, in some cases, horizontal branches with their members forming a dynamically coherent structure in proper motion space. Four of them were confirmed by spectroscopic follow-up with the MUSE instrument on the ESO VLT. Photometric parameters were derived, and when available, metallicities, radial velocities and orbits were determined. The new clusters Gran 1 and 5 are bulge globular clusters, while Gran 2, 3, and 4 present halo-like properties. Preliminary orbits indicate that Gran 1 might be related to the Main Progenitor, or the so-called low-energy group, while Gran 2, 3 and 5 appear to follow the Gaia-Enceladus-Sausage. This study demonstrates that the Gaia proper motions, combined with the spectroscopic follow-up and colour-magnitude diagrams, are required to confirm the nature of cluster candidates towards the inner Galaxy. High stellar crowding and differential extinction may hide other low-luminosity clusters.
The two red clumps (RCs) observed in the color-magnitude diagram of the Milky Way bulge is widely accepted as evidence for an X-shaped structure originated from the bar instability. A drastically different interpretation has been suggested, however, based on the He-enhanced multiple stellar population phenomenon as is observed in globular clusters (GCs). Because these two scenarios imply very different pictures on the formation of the bulge and elliptical galaxies, understanding the origin of the double RC is of crucial importance. Here we report our discovery that the stars in the two RCs show a significant (> 5.3 {sigma}) difference in CN-band strength, in stark contrast to that expected in the X-shaped bulge scenario. The difference in CN abundance and the population ratio between the two RCs are comparable to those observed in GCs between the first- and later generation stars. Since CN-strong stars trace a population with enhanced N, Na, and He abundances originated in GCs, this is direct evidence that the double RC is due to the multiple population phenomenon, and that a significant population of stars in the Milky Way bulge were assembled from disrupted proto-GCs. Our result also calls for the major revision of the 3D structure of the Milky Way bulge given that the current view is based on the previous interpretation of the double RC phenomenon.
Here we examine the Milky Ways GC system to estimate the fraction of accreted versus in situ formed GCs. We first assemble a high quality database of ages and metallicities for 93 Milky Way GCs from literature deep colour-magnitude data. The age-meta llicity relation for the Milky Ways GCs reveals two distinct tracks -- one with near constant old age of ~12.8 Gyr and the other branches to younger ages. We find that the latter young track is dominated by globular clusters associated with the Sagittarius and Canis Major dwarf galaxies. Despite being overly simplistic, its age-metallicity relation can be well represented by a simple closed box model with continuous star formation. The inferred chemical enrichment history is similar to that of the Large Magellanic Cloud, but is more enriched, at a given age, compared to the Small Magellanic Cloud. After excluding Sagittarius and Canis Major GCs, several young track GCs remain. Their horizontal branch morphologies are often red and hence classified as Young Halo objects, however they do not tend to reveal extended horizontal branches (a possible signature of an accreted remnant nucleus). Retrograde orbit GCs (a key signature of accretion) are commonly found in the young track. We also examine GCs that lie close to the Fornax-Leo-Sculptor great circle defined by several satellite galaxies. We find that several GCs are consistent with the young track and we speculate that they may have been accreted along with their host dwarf galaxy, whose nucleus may survive as a GC. Finally, we suggest that 27-47 GCs (about 1/4 of the entire system), from 6-8 dwarf galaxies, were accreted to build the Milky Way GC system we seen today.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا