ﻻ يوجد ملخص باللغة العربية
Tunable filters are a powerful way of implementing narrow-band imaging mode over wide wavelength ranges, without the need of purchasing a large number of narrow-band filters covering all strong emission or absorption lines at any redshift. However, one of its main features is a wavelength variation across the field of view, sometimes termed the phase effect. In this work, an anomalous phase effect is reported and characterized for the OSIRIS instrument at the 10.4m Gran Telescopio Canarias. The transmitted wavelength across the field of view of the instrument depends, not only on the distance to the optical centre, but on wavelength. This effect is calibrated for the red tunable filter of OSIRIS by measuring both normal-incidence light at laboratory and spectral lamps at the telescope at non-normal incidence. This effect can be explained by taking into account the inner coatings of the etalon. In a high spectral resolution etalon, the gap between plates is much larger than the thickness of the inner reflective coatings. In the case of a tunable filter, like that in OSIRIS, the coatings thickness could be of the order of the cavity, which changes drastically the effective gap of the etalon. We show that by including thick and dispersive coatings into the interference equations, the observed anomalous phase effect can be perfectly reproduced. In fact, we find that, for the OSIRIS red TF, a two-coatings model fits the data with a rms of 0.5AA at all wavelengths and incidence angles. This is a general physical model that can be applied to other tunable-filter instruments.
OSIRIS (Optical System for Imaging and low Resolution Integrated Spectroscopy) is the first light instrument of the Gran Telescopio Canarias (GTC). It provides a flexible and competitive tunable filter (TF). Since it is based on a Fabry-Perot interfe
The super-earth planet GJ 1214b has recently been the focus of several studies, using the transit spectroscopy technique, trying to determine the nature of its atmosphere. Here we focus on the Halpha line as a tool to further restrict the nature of G
We investigate the utility of the Tunable Filters (TFs) for obtaining flux calibrated emission line maps of extended objects such as galactic nebulae and nearby galaxies, using the OSIRIS instrument at the 10.4-m GTC. Despite a relatively large field
OSIRIS is the optical Day One instrument, and so far the only Spanish instrument, currently operating at the GTC. Building and testing an instrument for a 8-10m-class telescope with non-previous commissioning in turn, has represented a truly unique e
The study of Earth-mass extrasolar planets via the radial-velocity technique and the measurement of the potential cosmological variability of fundamental constants call for very-high-precision spectroscopy at the level of $updeltalambda/lambda<10^{-9