ترغب بنشر مسار تعليمي؟ اضغط هنا

A Multi-chain Measurements Averaging TDC Implemented in a 40 nm FPGA

81   0   0.0 ( 0 )
 نشر من قبل Qi Shen
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A high precision and high resolution time-to-digital converter (TDC) implemented in a 40 nm fabrication process Virtex-6 FPGA is presented in this paper. The multi-chain measurements averaging architecture is used to overcome the resolution limitation determined by intrinsic cell delay of the plain single tapped-delay chain. The resolution and precision are both improved with this architecture. In such a TDC, the input signal is connected to multiple tapped-delay chains simultaneously (the chain number is M), and there is a fixed delay cell between every two adjacent chains. Each tapped-delay chain is just a plain TDC and should generate a TDC time for a hit input signal, so totally M TDC time values should be got for a hit signal. After averaging, the final TDC time is obtained. A TDC with 3 ps resolution (i.e. bin size) and 6.5 ps precision (i.e. RMS) has been implemented using 8 parallel tapped-delay chains. Meanwhile the plain TDC with single tapped-delay chain yields 24 ps resolution and 18 ps precision.



قيم البحث

اقرأ أيضاً

87 - Qi Shen , Lei Zhao , Shubin Liu 2013
Up to the present, the wave union method can achieve the best timing performance in FPGA based TDC designs. However, it should be guaranteed in such a structure that the non-thermometer code to binary code (NTH2B) encoding process should be finished within just one system clock cycle. So the implementation of the NTH2B encoder is quite challenging considering the high speed requirement. Besides, the high resolution wave union TDC also demands the encoder to convert an ultra-wide input code to a binary code. We present a fast improved fat tree encoder (IFTE) to fulfill such requirements, in which bubble error suppression is also integrated. With this encoder scheme, a wave union TDC with 7.7 ps RMS and 3.8 ps effective bin size was implemented in an FPGA from Xilinx Virtex 5 family. An encoding time of 8.33 ns was achieved for a 276-bit non-thermometer code to a 9-bit binary code conversion. We conducted a series of tests on the oscillating period of the wave union launcher, as well as the overall performance of the TDC; test results indicate that the IFTE works well. In fact, in the implementation of this encoder, no manual routing or special constrains were required; therefore, this IFTE structure could also be further applied in other delay chain based FPGA TDCs.
Time-to-digital converters (TDCs) are used in various fields, including high-energy physics. One advantage of implementing TDCs in field-programmable gate arrays (FPGAs) is the flexibility on the modification of the logics, which is useful to cope wi th the changes in the experimental conditions. Recent FPGAs make it possible to implement TDCs with a time resolution less than 10 ps. On the other hand, various drift chambers require a time resolution of O(0.1) ns, and a simple and easy-to-implement TDC is useful for a robust operation. Herein an eight-channel TDC with a variable bin size down to 0.28 ns is implemented in a Xilinx Kintex-7 FPGA and tested. The TDC is based on a multisampling scheme with quad phase clocks synchronised with an external reference clock. Calibration of the bin size is unnecessary if a stable reference clock is available, which is common in high-energy physics experiments. Depending on the channel, the standard deviation of the differential nonlinearity for a 0.28 ns bin size is 0.13-0.31. The performance has a negligible dependence on the temperature. The power consumption and the potential to extend the number of channels are also discussed.
Time-of-flight (tof) techniques are standard techniques in high energy physics to determine particles propagation directions. Since particles velocities are generally close to c, the speed of light, and detectors typical dimensions at the meter level , the state-of-the-art tof techniques should reach sub-nanosecond timing resolution. Among the various techniques already available, the recently developed ring oscillator TDC ones, implemented in low cost FPGA, feature a very interesting figure of merit since a very good timing performance may be achieved with limited processing ressources. This issue is relevant for applications where unmanned sensors should have the lowest possible power consumption. Actually this article describes in details the application of this kind of tof technique to muon tomography of geological bodies. Muon tomography aims at measuring density variations and absolute densities through the detection of atmospheric muons fluxs attenuation, due to the presence of matter. When the measured fluxes become very low, an identified source of noise comes from backwards propagating particles hitting the detector in a direction pointing to the geological body. The separation between through-going and backward-going particles, on the basis of the tof information is therefore a key parameter for the tomography analysis and subsequent previsions.
A 33.6 ps LSB Time-to-Digital converter was designed in 130 nm BiCMOS technology. The core of the converter is a differential 9-stage ring oscillator, based on a multi-path architecture. A novel version of this design is proposed, along with an analy tical model of linearity. The model allowed us to understand the source of the performance superiority (in terms of linearity) of our design and to predict further improvements. The oscillator is integrated in a event-by-event self-calibration system that allows avoiding any PLL-based synchronization. For this reason and for the compactness and simplicity of the architecture, the proposed TDC is suitable for applications in which a large number of converters and a massive parallelization are required such as High-Energy Physics and medical imaging detector systems. A test chip for the TDC has been fabricated and tested. The TDC shows a DNL$leq$1.3 LSB, an INL$leq$2 LSB and a single-shot precision of 19.5 ps (0.58 LSB). The chip dissipates a power of 5.4 mW overall.
We propose a new fixed latency scheme for Xilinx gigabit transceivers that will be used in the upgrade of the ATLAS forward muon spectrometer at the Large Hadron Collider. The fixed latency scheme is implemented in a 4.8 Gbps link between a frontend data serializer ASIC and a packet router. To achieve fixed latency, we use IO delay and dedicated carry in resources in a Xilinx FPGA, while minimally relying on the embedded features of the FPGA transceivers. The scheme is protocol independent and can be adapted to FPGA from other vendors with similar resources. This paper presents a detailed implementation of the fixed latency scheme, as well as simulations of the real environment in the ATLAS forward muon region.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا