ترغب بنشر مسار تعليمي؟ اضغط هنا

Delta r and the W-boson mass in the Singlet Extension of the Standard Model

151   0   0.0 ( 0 )
 نشر من قبل Tania Robens
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The link between the electroweak gauge boson masses and the Fermi constant via the muon lifetime measurement is instrumental for constraining and eventually pinning down new physics. We consider the simplest extension of the Standard Model with an additional real scalar SU(2)_L x U(1)_Y singlet and compute the electroweak precision parameter Delta r, along with the corresponding theoretical prediction for the W-boson mass. When confronted with the experimental W-boson mass measurement, our predictions impose limits on the singlet model parameter space. We identify regions where these correspond to the most stringent experimental constraints that are currently available.



قيم البحث

اقرأ أيضاً

We study the decay of a heavy Higgs boson into a light Higgs pair at one loop in the singlet extension of the Standard Model. To this purpose, we construct several renormalization schemes for the extended Higgs sector of the model. We apply these sch emes to calculate the heavy-to-light Higgs decay width at next-to-leading order electroweak accuracy, and demonstrate that certain prescriptions lead to gauge-dependent results. We comprehensively examine how the NLO predictions depend on the relevant singlet model parameters, with emphasis on the trademark behavior of the quantum effects, and how these change under different renormalization schemes and a variable renormalization scale. Once all present constraints on the model are included, we find mild NLO corrections, typically of few percent, and with small theoretical uncertainties.
116 - Manoranjan Dutta 2021
A minimal extension of the Standard Model (SM) by a vector-like fermion doublet and three right handed (RH) singlet neutrinos is proposed in order to explain dark matter and tiny neutrino mass simultaneously. The DM arises as a mixture of the neutral component of the fermion doublet and one of the RH neutrinos, both assumed to be odd under an imposed $mathcal{Z}_2$ symmetry. Being Majorana in nature, the DM escapes from $Z$-mediated direct search constraints to mark a significant difference from singlet-doublet Dirac DM. The other two $mathcal{Z}_2$ even heavy RH neutrinos give rise masses and mixing of light neutrinos via Type-I Seesaw mechanism. Relic density and direct search allowed parameter space for the model is investigated through detailed numerical scan.
We consider a conformal complex singlet extension of the Standard Model with a Higgs portal interaction. The global $U(1)$ symmetry of the complex singlet can be either broken or unbroken and we study each scenario. In the unbroken case, the global $ U(1)$ symmetry protects the complex singlet from decaying, leading to an ideal cold dark matter candidate with approximately 100 GeV mass along with a significant proportion of thermal relic dark matter abundance. In the broken case, we have developed a renormalization-scale optimization technique to significantly narrow the parameter space and in some situations, provide unique predictions for all the models couplings and masses. We have found there exists a second Higgs boson with a mass of approximately $550,rm{GeV}$ that mixes with the known $125,rm{GeV}$ Higgs with a large mixing angle $sinthetaapprox 0.47$ consistent with current experimental limits. The imaginary part of the complex singlet in the broken case could provide axion dark matter for a wide range of models. Upon including interactions of the complex scalar with an additional vector-like fermion, we explore the possibility of a diphoton excess in both the unbroken and the broken cases. In the unbroken case, the model can provide a natural explanation for diphoton excess if extra terms are introduced providing extra contributions to the singlet mass. In the broken case, we find a set of coupling solutions that yield a second Higgs boson of mass $720,rm{GeV}$ and an $830,rm{GeV}$ extra vector-like fermion $F$, which is able to address the $750,rm{GeV}$ LHC diphoton excess. We also provide criteria to determine the symmetry breaking pattern in both the Higgs and hidden sectors.
A detailed study of Higgs interference effects at the one-loop level in the 1-Higgs-Singlet extension of the Standard Model (1HSM) is presented for the WW and tt decay modes with fully leptonic WW decay. We explore interference effects for benchmark points with a heavy Higgs mass that significantly exceeds 2*m_t. In the WW channel, the Higgs signal and the interfering continuum background are loop induced. In the tt channel, which features a tree-level background, we also calculate the interference with the one-loop background, which, due to the appearance of the absorptive part, is found to dominate the normalisation and shape of differential Higgs distributions and should therefore be considered in experimental analyses. The commonly used geometric average K-factor approximation K_interference ~ (K_Higgs*K_background)^(1/2) is not appropriate. We calculate with massive top and bottom quarks. Our 1HSM and SM implementation in Sherpa+OpenLoops is publicly available and can be used as parton-level integrator or event generator.
Previous studies of the physics potential of LEP2 indicated that with the design luminosity of 500 inverse picobarn one may get a direct measurement of the mass of the W-boson with a precision in the range 30 - 50 MeV. This report presents an updated evaluation of the estimated error on the mass of the W-boson based on recent simulation work and improved theoretical input. The most efficient experimental methods which will be used are also described.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا