ترغب بنشر مسار تعليمي؟ اضغط هنا

Reversing the Pump-Dependence of a Laser at an Exceptional Point

201   0   0.0 ( 0 )
 نشر من قبل Stefan Rotter
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

When two resonant modes in a system with gain or loss coalesce in both their resonance position and their width, a so-called Exceptional Point occurs which acts as a source of non-trivial physics in a diverse range of systems. Lasers provide a natural setting to study such non-Hermitian degeneracies, since they feature resonant modes and a gain material as their basic constituents. Here we show that Exceptional Points can be conveniently induced in a photonic molecule laser by a suitable variation of the applied pump. Using a pair of coupled micro-disk quantum cascade lasers, we demonstrate that in the vicinity of these Exceptional Points the laser shows a characteristic reversal of its pump-dependence, including a strongly decreasing intensity of the emitted laser light for increasing pump power. This result establishes photonic molecule lasers as promising tools for exploring many further fascinating aspects of Exceptional Points, like a strong line-width enhancement and the coherent perfect absorption of light in their vicinity as well as non-trivial mode-switching and the accumulation of a geometric phase when encircling an Exceptional Point parametrically.

قيم البحث

اقرأ أيضاً

Electromagnetically induced transparency, as a quantum interference effect to eliminate optical absorption in an opaque medium, has found extensive applications in slow light generation, optical storage, frequency conversion, optical quantum memory a s well as enhanced nonlinear interactions at the few-photon level in all kinds of systems. Recently, there have been great interests in exceptional points, a spectral singularity that could be reached by tuning various parameters in open systems, to render unusual features to the physical systems, such as optical states with chirality. Here we theoretically and experimentally study transparency and absorption modulated by chiral optical states at exceptional points in an indirectly-coupled resonator system. By tuning one resonator to an exceptional point, transparency or absorption occurs depending on the chirality of the eigenstate. Our results demonstrate a new strategy to manipulate the light flow and the spectra of a photonic resonator system by exploiting a discrete optical state associated with specific chirality at an exceptional point as a unique control bit, which opens up a new horizon of controlling slow light using optical states. Compatible with the idea of state control in quantum gate operation, this strategy hence bridges optical computing and storage.
Dynamically varying system parameters along a path enclosing an exceptional point is known to lead to chiral mode conversion. But is it necessary to include this non-Hermitian degeneracy inside the contour for this process to take place? We show that a slow enough variation of parameters, even away from the systems exceptional point, can also lead to a robust asymmetric state exchange. To study this process, we consider a prototypical two-level non-Hermitian Hamiltonian with a constant coupling between elements. Closed form solutions are obtained when the amplification/attenuation coefficients in this arrangement are varied in conjunction with the resonance detuning along a circular contour. Using asymptotic expansions, this input-independent mode conversion is theoretically proven to take place irrespective of whether the exceptional point is enclosed or not upon encirclement. Our results significantly broaden the range of parameter space required for the experimental realization of such chiral mode conversion processes.
We consider a two-dimensional nonlinear waveguide with distributed gain and losses. The optical potential describing the system consists of an unperturbed complex potential depending only on one transverse coordinate, i.e., corresponding to a planar waveguide, and a small non-separable perturbation depending on both transverse coordinates. It is assumed that the spectrum of the unperturbed planar waveguide features an exceptional point (EP), while the perturbation drives the system into the unbroken phase. Slightly below the EP, the waveguide sustains two-component envelope solitons. We derive one-dimensional equations for the slowly varying envelopes of the components and show their stable propagation. When both traverse directions are taken into account within the framework of the original model, the obtained two-component bright solitons become metastable and persist over remarkably long propagation distances.
Magnon-polaritons are hybrid light-matter quasiparticles originating from the strong coupling between magnons and photons. They have emerged as a potential candidate for implementing quantum transducers and memories. Owing to the dampings of both pho tons and magnons, the polaritons have limited lifetimes. However, stationary magnon-polariton states can be reached by a dynamical balance between pumping and losses, so the intrinsical nonequilibrium system may be described by a non-Hermitian Hamiltonian. Here we design a tunable cavity quantum electrodynamics system with a small ferromagnetic sphere in a microwave cavity and engineer the dissipations of photons and magnons to create cavity magnon-polaritons which have non-Hermitian spectral degeneracies. By tuning the magnon-photon coupling strength, we observe the polaritonic coherent perfect absorption and demonstrate the phase transition at the exceptional point. Our experiment offers a novel macroscopic quantum platform to explore the non-Hermitian physics of the cavity magnon-polaritons.
115 - Guo-Qiang Zhang , J. Q. You 2018
We propose to realize the pseudo-Hermiticity in a cavity magnonics system consisting of the Kittel modes in two small yttrium-iron-garnet spheres coupled to a microwave cavity mode. The effective gain of the cavity can be achieved using the coherent perfect absorption of the two input fields fed into the cavity. With certain constraints of the parameters, the Hamiltonian of the system has the pseudo-Hermiticity and its eigenvalues can be either all real or one real and other two constituting a complex-conjugate pair. By varying the coupling strengths between the two Kittel modes and the cavity mode, we find the existence of the third-order exceptional point in the parameter space, in addition to the usual second-order exceptional point existing in the system with parity-time symmetry. Also, we show that these exceptional points can be demonstrated by measuring the output spectrum of the cavity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا