ﻻ يوجد ملخص باللغة العربية
Let $f:Xto X$ be a dominating meromorphic map of a compact Kahler surface of large topological degree. Let $S$ be a positive closed current on $X$ of bidegree $(1,1)$. We consider an ergodic measure $ u$ of large entropy supported by $mathrm{supp}(S)$. Defining dimensions for $ u$ and $S$, we give inequalities `a la Ma~ne involving the Lyapunov exponents of $ u$ and those dimensions. We give dynamical applications of those inequalities.
Given a compact topological dynamical system (X, f) with positive entropy and upper semi-continuous entropy map, and any closed invariant subset $Y subset X$ with positive entropy, we show that there exists a continuous roof function such that the se
In this work we study the dynamical behavior Tonelli Lagrangian systems defined on the tangent bundle of the torus $mathbb{T}^2=mathbb{R}^2 / mathbb{Z}^2$. We prove that the Lagrangian flow restricted to a high energy level $ E_L^{-1}(c)$ (i.e $ c> c
For a rational function f we consider the norm of the derivative with respect to the spherical metric and denote by K(f) the supremum of this norm. We give estimates of this quantity K(f) both for an individual function and for sequences of iterates.
Higher-dimensional binary shifts of number-theoretic origin with positive topological entropy are considered. We are particularly interested in analysing their symmetries and extended symmetries. They form groups, known as the topological centraliser
Let $Lambda$ be a complex manifold and let $(f_lambda)_{lambdain Lambda}$ be a holomorphic family of rational maps of degree $dgeq 2$ of $mathbb{P}^1$. We define a natural notion of entropy of bifurcation, mimicking the classical definition of entrop