ترغب بنشر مسار تعليمي؟ اضغط هنا

On the measures of large entropy on a positive closed current

203   0   0.0 ( 0 )
 نشر من قبل Gabriel Vigny
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $f:Xto X$ be a dominating meromorphic map of a compact Kahler surface of large topological degree. Let $S$ be a positive closed current on $X$ of bidegree $(1,1)$. We consider an ergodic measure $ u$ of large entropy supported by $mathrm{supp}(S)$. Defining dimensions for $ u$ and $S$, we give inequalities `a la Ma~ne involving the Lyapunov exponents of $ u$ and those dimensions. We give dynamical applications of those inequalities.



قيم البحث

اقرأ أيضاً

Given a compact topological dynamical system (X, f) with positive entropy and upper semi-continuous entropy map, and any closed invariant subset $Y subset X$ with positive entropy, we show that there exists a continuous roof function such that the se t of measures of maximal entropy for the suspension semi-flow over (X,f) consists precisely of the lifts of measures which maximize entropy on Y. This result has a number of implications for the possible size of the set of measures of maximal entropy for topological suspension flows. In particular, for a suspension flow on the full shift on a finite alphabet, the set of ergodic measures of maximal entropy may be countable, uncountable, or have any finite cardinality.
In this work we study the dynamical behavior Tonelli Lagrangian systems defined on the tangent bundle of the torus $mathbb{T}^2=mathbb{R}^2 / mathbb{Z}^2$. We prove that the Lagrangian flow restricted to a high energy level $ E_L^{-1}(c)$ (i.e $ c> c _0(L)$) has positive topological entropy if the flow satisfies the Kupka-Smale propriety in $ E_L^{-1}(c)$ (i.e, all closed orbit with energy $c$ are hyperbolic or elliptic and all heteroclinic intersections are transverse on $E_L^{-1}(c)$). The proof requires the use of well-known results in Aubry-Mathers Theory.
For a rational function f we consider the norm of the derivative with respect to the spherical metric and denote by K(f) the supremum of this norm. We give estimates of this quantity K(f) both for an individual function and for sequences of iterates.
Higher-dimensional binary shifts of number-theoretic origin with positive topological entropy are considered. We are particularly interested in analysing their symmetries and extended symmetries. They form groups, known as the topological centraliser and normaliser of the shift dynamical system, which are natural topological invariants. Here, our focus is on shift spaces with trivial centralisers, but large normalisers. In particular, we discuss several systems where the normaliser is an infinite extension of the centraliser, including the visible lattice points and the $k$-free integers in some real quadratic number fields.
Let $Lambda$ be a complex manifold and let $(f_lambda)_{lambdain Lambda}$ be a holomorphic family of rational maps of degree $dgeq 2$ of $mathbb{P}^1$. We define a natural notion of entropy of bifurcation, mimicking the classical definition of entrop y, by the parametric growth rate of critical orbits. We also define a notion a measure-theoretic bifurcation entropy for which we prove a variational principle: the measure of bifurcation is a measure of maximal entropy. We rely crucially on a generalization of Yomdins bound of the volume of the image of a dynamical ball. Applying our technics to complex dynamics in several variables, we notably define and compute the entropy of the trace measure of the Green currents of a holomorphic endomorphism of $mathbb{P}^k$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا