ترغب بنشر مسار تعليمي؟ اضغط هنا

Heavy-ion Collisions: Direct and indirect probes of the density and temperature dependence of Esym

40   0   0.0 ( 0 )
 نشر من قبل Zach Kohley
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Heavy-ion collisions provide a versatile terrestrial probe of the nuclear equation of state through the formation of nuclear matter at a wide variety of temperatures, densities, and pressures. Direct and indirect approaches for constraining the density dependence of the symmetry energy using heavy-ion collisions have been developed. The direct approach relies on scaling methods which attempt to connect isotopic fragment distributions to the symmetry energy. Using the indirect approach constraints on the equation of state are extracted from comparison of experimental results and theoretical transport calculations which utilize effective nucleon-nucleon interactions. Besides exploring the density dependence of the equation of state, heavy-ion collisions are simultaneously probing different temperature gradients of nuclear matter allowing for the temperature dependence of the symmetry energy to be examined. The current progress and open questions related to constraining the density and temperature dependence of the symmetry energy with heavy-ion collisions are discussed in the review.

قيم البحث

اقرأ أيضاً

A recently proposed method, based on quadrupole and multiplicity fluctuations in heavy ion collisions, is modified in order to take into account distortions due to the Coulomb field. This is particularly interesting for bosons produced in heavy ion c ollisions, such as $d$ and $alpha$ particles. We derive temperatures and densities seen by the bosons and compare to similar calculations for fermions. The resulting energy densities agree rather well with each other and with the one derived from neutrons. This suggests that a common phenomenon, such as the sudden opening of many reaction channels and/or a liquid gas phase transition, is responsible for the agreement.
Detailed studies of the azimuthal dependence of the mean fragment and flow energies in the Au+Au and Xe+CsI systems are reported as a function of incident energy and centrality. Comparisons between data and model calculations show that the flow energ y values along different azimuthal directions could be viewed as snapshots of the fireball expansion with different exposure times. For the same number of participating nucleons more transversally elongated participant shapes from the heavier system produce less collective transverse energy. Good agreement with BUU calculations is obtained for a soft nuclear equation of state.
The PHENIX collaboration presents first measurements of low-momentum ($0.4<p_T<3$ GeV/$c$) direct-photon yields from Au$+$Au collisions at $sqrt{s_{_{NN}}}$=39 and 62.4 GeV. For both beam energies the direct-photon yields are substantially enhanced w ith respect to expectations from prompt processes, similar to the yields observed in Au$+$Au collisions at $sqrt{s_{_{NN}}}$=200. Analyzing the photon yield as a function of the experimental observable $dN_{rm ch}/deta$ reveals that the low-momentum ($>$1,GeV/$c$) direct-photon yield $dN_{gamma}^{rm dir}/deta$ is a smooth function of $dN_{rm ch}/deta$ and can be well described as proportional to $(dN_{rm ch}/deta)^alpha$ with $alpha{approx}1.25$. This scaling behavior holds for a wide range of beam energies at the Relativistic Heavy Ion Collider and the Large Hadron Collider, for centrality selected samples, as well as for different, $A$$+$$A$ collision systems. At a given beam energy the scaling also holds for high $p_T$ ($>5$,GeV/$c$) but when results from different collision energies are compared, an additional $sqrt{s_{_{NN}}}$-dependent multiplicative factor is needed to describe the integrated-direct-photon yield.
295 - G. H. Liu , Y. G. Ma , X. Z. Cai 2008
Hard photon emitted from energetic heavy ion collisions is of very interesting since it does not experience the late-stage nuclear interaction, therefore it is useful to explore the early-stage information of matter phase. In this work, we have prese nted a first calculation of azimuthal asymmetry, characterized by directed transverse flow parameter $F$ and elliptic asymmetry coefficient $v_2$, for proton-neutron bremsstrahlung hard photons in intermediate energy heavy-ion collisions. The positive $F$ and negative $v_2$ of direct photons are illustrated and they seem to be anti-correlated to the corresponding free protons flow.
136 - Q. Li , Z. X. Li , S. Soff 2005
Based on the ultrarelativistic quantum molecular dynamics (UrQMD) model, the effects of the density-dependent symmetry potential for baryons and of the Coulomb potential for produced mesons are investigated for neutron-rich heavy ion collisions at in termediate energies. The calculated results of the $Delta^-/Delta^{++}$ and $pi ^{-}/pi ^{+}$ production ratios show a clear beam-energy dependence on the density-dependent symmetry potential, which is stronger for the $pi ^{-}/pi ^{+}$ ratio close to the pion production threshold. The Coulomb potential of the mesons changes the transverse momentum distribution of the $pi ^{-}/pi ^{+}$ ratio significantly, though it alters only slightly the $pi^-$ and $pi^+$ total yields. The $pi^-$ yields, especially at midrapidity or at low transverse momenta and the $pi^-/pi^+$ ratios at low transverse momenta, are shown to be sensitive probes of the density-dependent symmetry potential in dense nuclear matter. The effect of the density-dependent symmetry potential on the production of both, K$^0$ and K$^+$ mesons, is also investigated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا