ﻻ يوجد ملخص باللغة العربية
We demonstrate a remote microwave/radio-frequency (RF) transfer technique based on the stabilization of a fiber link using a fiber-loop optical-microwave phase detector (FLOM-PD). This method compensates for the excess phase fluctuations introduced in fiber transfer by direct phase comparison between the optical pulse train reflected from the remote site and the local microwave/RF signal using the FLOM-PD. This enables sub-fs resolution and long-term stable link stabilization while having wide timing detection range and less demand in fiber dispersion compensation. The demonstrated relative frequency instability between 2.856-GHz RF oscillators separated by a 2.3-km fiber link is $7.6 times 10^{-18}$ and $6.5 times 10^{-19}$ at 1000 s and 82500 s averaging time, respectively.
In this letter, we report on all-optical fiber approach to the generation of ultra-low noise microwave signals. We make use of two erbium fiber mode-locked lasers phase locked to a common ultra-stable laser source to generate an 11.55 GHz signal with
We demonstrate the long-distance transmission of an ultra-stable optical frequency derived directly from a state-of-the-art optical frequency standard. Using an active stabilization system we deliver the frequency via a 146 km long underground fiber
The phase information provided by the beat note between frequency combs and two continuous-wave lasers is used to extrapolate the phase evolution of comb modes found in a spectral region obtained via nonlinear broadening. This thereafter enables usin
To significantly improve the frequency references used in radio-astronomy and precision measurements in atomic physics, we provide frequency dissemination through a 642 km coherent optical fiber link, that will be also part of a forthcoming European
In this paper, we present a very simple design based on commercial devices for the all-optical generation of ultra-low phase noise microwave signals. A commercial, fibered femtosecond laser is locked to a laser that is stabilized to a commercial ULE