ترغب بنشر مسار تعليمي؟ اضغط هنا

The mass distribution of clumps within infrared dark clouds. A Large APEX Bolometer Camera study

79   0   0.0 ( 0 )
 نشر من قبل Laura Gomez
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Laura Gomez




اسأل ChatGPT حول البحث

We present an analysis of the dust continuum emission at 870 um in order to investigate the mass distribution of clumps within infrared dark clouds (IRDCs). We map six IRDCs with the Large APEX BOlometer CAmera (LABOCA) at APEX, reaching an rms noise level of 28-44 mJy/beam. The dust continuum emission coming from these IRDCs was decomposed by using two automated algorithms, Gaussclumps and Clumpfind. Moreover, we carried out single-pointing observations of the N_2H^+ (3-2) line toward selected positions to obtain kinematic information. The mapped IRDCs are located in the range of kinematic distances of 2.7-3.2 kpc. We identify 510 and 352 sources with Gaussclumps and Clumpfind, respectively, and estimate masses and other physical properties assuming a uniform dust temperature. The mass ranges are 6-2692 Msun (Gaussclumps) and 7-4254 Msun (Clumpfind) and the ranges in effective radius are around 0.10-0.74 pc (Gaussclumps) and 0.16-0.99 pc (Clumpfind). The mass distribution, independent of the decomposition method used, is fitted by a power law, dN/dM propto M^alpha, with an index of -1.60 +/- 0.06, consistent with the CO mass distribution and other high-mass star-forming regions.


قيم البحث

اقرأ أيضاً

102 - G. Siringo , E. Kreysa , A. Kovacs 2009
The Large APEX Bolometer Camera, LABOCA, has been commissioned for operation as a new facility instrument t the Atacama Pathfinder Experiment 12m submillimeter telescope. This new 295-bolometer total power camera, operating in the 870 micron atmosphe ric window, combined with the high efficiency of APEX and the excellent atmospheric transmission at the site, offers unprecedented capability in mapping submillimeter continuum emission for a wide range of astronomical purposes.
100 - N. Peretto , A. Rigby , Ph. Andre 2020
The mass growth of protostars is a central element to the determination of fundamental stellar population properties such as the initial mass function. Constraining the accretion history of individual protostars is therefore an important aspect of st ar formation research. The goal of the study presented here is to determine whether high-mass (proto)stars gain their mass from a compact (<0.1pc) fixed-mass reservoir of gas, often referred to as dense cores, in which they are embedded, or whether the mass growth of high-mass stars is governed by the dynamical evolution of the parsec-scale clump that typically surrounds them. To achieve this goal, we performed a 350micron continuum mapping of 11 infrared dark clouds, along side some of their neighbouring clumps, with the ArTeMiS camera on APEX. By identifying about 200 compact ArTeMiS sources, and matching them with Herschel Hi-GAL 70micron sources, we have been able to produce mass vs. temperature diagrams. We compare the nature (i.e. starless or protostellar) and location of the ArTeMiS sources in these diagrams with modelled evolutionary tracks of both core-fed and clump-fed accretion scenarios. We argue that the latter provide a better agreement with the observed distribution of high-mass star-forming cores. However, a robust and definitive conclusion on the question of the accretion history of high-mass stars requires larger number statistics.
Infrared dark clouds (IRDCs) are thought to be potential hosts of the elusive early phases of high-mass star formation. Here we conduct an in-depth kinematic analysis of one such IRDC, G034.43+00.24 (Cloud F), using high sensitivity and high spectral resolution IRAM-30m N$_2$H$^+$ ($1-0$) and C$^{18}$O ($1-0$) observations. To disentangle the complex velocity structure within this cloud we use Gaussian decomposition and hierarchical clustering algorithms. We find that four distinct coherent velocity components are present within Cloud F. The properties of these components are compared to those found in a similar IRDC, G035.39-00.33 (Cloud H). We find that the components in both clouds have: high densities (inferred by their identification in N$_2$H$^+$), trans-to-supersonic non-thermal velocity dispersions with Mach numbers of $sim$ $1.5-4$, a separation in velocity of $sim$3 km s$^{-1}$, and a mean red-shift of $sim$ 0.3 km s$^{-1}$ between the N$_2$H$^+$ (dense gas) and C$^{18}$O emission (envelope gas). The latter of these could suggest that these clouds share a common formation scenario. We investigate the kinematics of the larger-scale Cloud F structures, using lower-density-tracing $^{13}$CO ($1-0$) observations. A good correspondence is found between the components identified in the IRAM-30m observations and the most prominent component in the$^{13}$CO data. We find that the IRDC Cloud F is only a small part of a much larger structure, which appears to be an inter-arm filament of the Milky Way.
High-mass Stars are cosmic engines known to dominate the energetics in the Milky Way and other galaxies. However, their formation is still not well understood. Massive, cold, dense clouds, often appearing as Infrared Dark Clouds (IRDCs), are the nurs eries of massive stars. No measurements of magnetic fields in IRDCs in a state prior to the onset of high-mass star formation (HMSF) have previously been available, and prevailing HMSF theories do not consider strong magnetic fields. Here, we report observations of magnetic fields in two of the most massive IRDCs in the Milky Way. We show that IRDCs G11.11-0.12 and G0.253+0.016 are strongly magnetized and that the strong magnetic field is as important as turbulence and gravity for HMSF. The main dense filament in G11.11-0.12 is perpendicular to the magnetic field, while the lower density filament merging onto the main filament is parallel to the magnetic field. The implied magnetic field is strong enough to suppress fragmentation sufficiently to allow HMSF. Other mechanisms reducing fragmentation, such as the entrapment of heating from young stars via high mass surface densities, are not required to facilitate HMSF.
176 - R. Retes-Romero 2020
Ever since their discovery, Infrared dark clouds (IRDCs) are generally considered to be the sites just at the onset of high-mass (HM) star formation. In recent years, it has been realized that not all IRDCs harbour HM Young Stellar Objects (YSOs). On ly those IRDCs satisfying a certain mass-size criterion, or equivalently above a certain threshold density, are found to contain HMYSOs. In all cases, IRDCs provide ideal conditions for the formation of stellar clusters. In this paper, we study the massive stellar content of IRDCs to re-address the relation between IRDCs and HM star formation. For this purpose, we have identified all IRDCs associated to a sample of 12 Galactic molecular clouds (MCs). The selected MCs have been the target of a systematic search for YSOs in an earlier study. The catalogued positions of YSOs have been used to search all YSOs embedded in each identified IRDC. In total, we have found 834 YSOs in 128 IRDCs. The sample of IRDCs have mean surface densities of 319 Mo/pc2, mean mass of 1062 Mo, and a mass function power-law slope -1.8, which are similar to the corresponding properties for the full sample of IRDCs and resulting physical properties in previous studies. We find that all those IRDCs containing at least one intermediate to high-mass young star satisfy the often-used mass-size criterion for forming HM stars. However, not all IRDCs satisfying the mass-size criterion contain HM stars. We find that the often used mass-size criterion corresponds to 35% probability of an IRDC forming a massive star. Twenty five (20%) of the IRDCs are potential sites of stellar clusters of mass more than 100 Mo.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا