ﻻ يوجد ملخص باللغة العربية
Recently it has been suggested that the fragmentation boundary in Smoothed Particle Hydrodynamic (SPH) and FARGO simulations of self-gravitating accretion discs with beta-cooling do not converge as resolution is increased. Furthermore, this recent work suggests that by carefully optimising the artificial viscosity parameters in these codes it can be shown that fragmentation may occur for much longer cooling times than earlier work suggests. If correct, this result is intriguing as it suggests that gas giant planets could form, via direct gravitational collapse, reasonably close to their parent stars. This result is, however, slightly surprising and there have been a number of recent studies suggesting that the result is likely an indication of a numerical problem with the simulations. One suggestion, in particular, is that the SPH results are influenced by the manner in which the cooling is implemented. We extend this work here and show that if the cooling is implemented in a manner that removes a known numerical artefact in the shock regions, the fragmentation boundary converges to a value consistent with earlier work and that fragmentation is unlikely for the long cooling times suggested by this recent work. We also investigate the optimisation of the artificial viscosity parameters and show that the values that appear optimal are likely introducing numerical problems in both the SPH and FARGO simulations. We therefore conclude that earlier predictions for the cooling times required for fragmentation are likely correct and that, as suggested by this earlier work, fragmentation cannot occur in the inner parts (r < 50 au) of typical protostellar discs.
It is quite likely that self-gravity will play an important role in the evolution of accretion discs, in particular those around young stars, and those around supermassive black holes. We summarise, here, our current understanding of the evolution of
Gas giant planets may form early-on during the evolution of protostellar discs, while these are relatively massive. We study how Jupiter-mass planet-seeds (termed protoplanets) evolve in massive, but gravitationally stable (Q>1.5), discs using radiat
We present a 3D semi-analytic model of self-gravitating discs, and include a prescription for dust trapping in the disc spiral arms. Using Monte-Carlo radiative transfer we produce synthetic ALMA observations of these discs. In doing so we demonstrat
It has recently been suggested that in the presence of driven turbulence discs may be much less stable against gravitational collapse than their non turbulent analogs, due to stochastic density fluctuations in turbulent flows. This mode of fragmentat
I review recent progresses in the dynamics and the evolution of self-gravitating accretion discs. Accretion discs are a fundamental component of several astrophysical systems on very diverse scales, and can be found around supermassive black holes in