ترغب بنشر مسار تعليمي؟ اضغط هنا

Small circulant complex Hadamard matrices of Butson type

108   0   0.0 ( 0 )
 نشر من قبل Jean-Marc Schlenker
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the circulant complex Hadamard matrices of order $n$ whose entries are $l$-th roots of unity. For $n=l$ prime we prove that the only such matrix, up to equivalence, is the Fourier matrix, while for $n=p+q,l=pq$ with $p,q$ distinct primes there is no such matrix. We then provide a list of equivalence classes of such matrices, for small values of $n,l$.



قيم البحث

اقرأ أيضاً

If $q = p^n$ is a prime power, then a $d$-dimensional emph{$q$-Butson Hadamard matrix} $H$ is a $dtimes d$ matrix with all entries $q$th roots of unity such that $HH^* = dI_d$. We use algebraic number theory to prove a strong constraint on the dimens ion of a circulant $q$-Butson Hadamard matrix when $d = p^m$ and then explicitly construct a family of examples in all possible dimensions. These results relate to the long-standing circulant Hadamard matrix conjecture in combinatorics.
In this paper, we obtain a number of new infinite families of Hadamard matrices. Our constructions are based on four new constructions of difference families with four or eight blocks. By applying the Wallis-Whiteman array or the Kharaghani array to the difference families constructed, we obtain new Hadamard matrices of order $4(uv+1)$ for $u=2$ and $vin Phi_1cup Phi_2 cup Phi_3 cup Phi_4$; and for $uin {3,5}$ and $vin Phi_1cup Phi_2 cup Phi_3$. Here, $Phi_1={q^2:qequiv 1pmod{4}mbox{ is a prime power}}$, $Phi_2={n^4in mathbb{N}:nequiv 1pmod{2}} cup {9n^4in mathbb{N}:nequiv 1pmod{2}}$, $Phi_3={5}$ and $Phi_4={13,37}$. Moreover, our construction also yields new Hadamard matrices of order $8(uv+1)$ for any $uin Phi_1cup Phi_2$ and $vin Phi_1cup Phi_2 cup Phi_3$.
107 - Koji Momihara , Qing Xiang 2018
In this paper, we generalize classical constructions of skew Hadamard difference families with two or four blocks in the additive groups of finite fields given by Szekeres (1969, 1971), Whiteman (1971) and Wallis-Whiteman (1972). In particular, we sh ow that there exists a skew Hadamard difference family with $2^{u-1}$ blocks in the additive group of the finite field of order $q^e$ for any prime power $qequiv 2^u+1,({mathrm{mod, , }2^{u+1}})$ with $uge 2$ and any positive integer $e$. In the aforementioned work of Szekeres, Whiteman, and Wallis-Whiteman, the constructions of skew Hadamard difference families with $2^{u-1}$ ($u=2$ or $3$) blocks in $({mathbb F}_{q^e},+)$ depend on the exponent $e$, with $eequiv 1,2,$ or $3,({mathrm{mod, , }4})$ when $u=2$, and $eequiv 1,({mathrm{mod, , }2})$ when $u=3$, respectively. Our more general construction, in particular, removes the dependence on $e$. As a consequence, we obtain new infinite families of skew Hadamard matrices.
In light of recent interest in Hadamard diagonalisable graphs (graphs whose Laplacian matrix is diagonalisable by a Hadamard matrix), we generalise this notion from real to complex Hadamard matrices. We give some basic properties and methods of const ructing such graphs. We show that a large class of complex Hadamard diagonalisable graphs have vertex sets forming an equitable partition, and that the Laplacian eigenvalues must be even integers. We provide a number of examples and constructions of complex Hadamard diagonalisable graphs, including two special classes of graphs: the Cayley graphs over $mathbb{Z}_r^d$, and the non--complete extended $p$--sum (NEPS). We discuss necessary and sufficient conditions for $(alpha, beta)$--Laplacian fractional revival and perfect state transfer on continuous--time quantum walks described by complex Hadamard diagonalisable graphs and provide examples of such quantum state transfer.
We investigate polynomials, called m-polynomials, whose generator polynomial has coefficients that can be arranged as a matrix, where q is a positive integer greater than one. Orthogonality relations are established and coefficients are obtained for the expansion of a polynomial in terms of m-polynomials. We conclude this article by an implementation in MATHEMATICA of m-polynomials and the results obtained for them.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا