ترغب بنشر مسار تعليمي؟ اضغط هنا

Stationary black diholes

91   0   0.0 ( 0 )
 نشر من قبل Vladimir S. Manko
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we present and analyze the simplest physically meaningful model for stationary black diholes - a binary configuration of counter-rotating Kerr-Newman black holes endowed with opposite electric charges - elaborated in a physical parametrization on the basis of one of the Ernst-Manko-Ruiz equatorially antisymmetric solutions of the Einstein-Maxwell equations. The model saturates the Gabach-Clement inequality for interacting black holes with struts, and in the absence of rotation it reduces to the Emparan-Teo electric dihole solution. The physical characteristics of each dihole constituent satisfy identically the well-known Smarrs mass formula.

قيم البحث

اقرأ أيضاً

We show that a recent solution published by Cabrera-Munguia et al. is physically inconsistent since the quantity $sigma$ it involves does not have a correct limit $Rtoinfty$.
In this brief note we argue that a dyonic generalization of the Emparan-Teo dihole solution is described by a static diagonal metric and therefore, contrary to the claim made in a recent paper by Cabrera-Munguia et al., does not involve any non-vanishing global angular momentum and rotating charges.
130 - Andrey A. Shoom 2015
We study the interior of distorted stationary rotating black holes on the example of a Kerr black hole distorted by external static and axisymmetric mass distribution. We show that there is a duality transformation between the outer and inner horizon s of the black hole, which is different from that of an electrically charged static distorted black hole. The duality transformation is directly related to the discrete symmetry of the space-time. The black hole horizons area, surface gravity, and angular momentum satisfy the Smarr formula constructed for both the horizons. We formulate the zeroth, the first, and the second laws of black hole thermodynamics for both the horizons of the black hole and show the correspondence between the local and the global forms of the first law. The Smarr formula and the laws of thermodynamics formulated for both the horizons are related by the duality transformation. The distortion is illustrated on the example of a quadrupole and octupole fields. The distortion fields noticeably affect the proper time of a free fall from the outer to the inner horizon of the black hole along the symmetry semi-axes. There is some minimal non-zero value of the quadrupole and octupole moments when the time becomes minimal. The minimal proper time indicates the closest approach of the horizons due to the distortion.
It has been well known since the 1970s that stationary black holes do not generically support scalar hair. Most of the no-hair theorems which support this depend crucially upon the assumption that the scalar field has no time dependence. Here we fill in this omission by ruling out the existence of stationary black hole solutions even when the scalar field may have time dependence. Our proof is fairly general, and in particular applies to non-canonical scalar fields and certain non-asymptotically flat spacetimes. It also does not rely upon the spacetime being a black hole.
We prove a uniqueness theorem for stationary $D$-dimensional Kaluza-Klein black holes with $D-2$ Killing fields, generating the symmetry group ${mathbb R} times U(1)^{D-3}$. It is shown that the topology and metric of such black holes is uniquely det ermined by the angular momenta and certain other invariants consisting of a number of real moduli, as well as integer vectors subject to certain constraints.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا