ترغب بنشر مسار تعليمي؟ اضغط هنا

40 Years of Variable Stars: A Celebration of Contributions by Horace A. Smith

37   0   0.0 ( 0 )
 نشر من قبل Charles Kuehn
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This online book contains the proceedings of a meeting held at Michigan State University to celebrate the career and contributions of Horace A Smith. The meeting focused on the areas of astronomy which Horace worked on over the years and featured talks on RR Lyrae, Cepheids, and other variable stars. In addition to the direct links to the arXiv articles, I have included a link to download the entire book for free.

قيم البحث

اقرأ أيضاً

In this paper, we report the detections of stellar variabilities from the first 2-year observations of sky area of about 1300 square degrees from the Tsinghua University-NAOC Transient Survey (TNTS). A total of 1237 variable stars (including 299 new ones) were detected with brightness < 18.0 mag and magnitude variation >= 0.1 mag on a timescale from a few hours to few hundred days. Among such detections, we tentatively identified 661 RR Lyrae stars, 431 binaries, 72 Semiregular pulsators, 29 Mira stars, 11 slow irregular variables, 11 RS Canum Venaticorum stars, 7 Gamma Doradus stars, 5 long period variables, 3 W Virginis stars, 3 Delta Scuti stars, 2 Anomalous Cepheids, 1 Cepheid, and 1 nove-like star based on their time-series variability index Js and their phased diagrams. Moreover, we found that 14 RR Lyrae stars show the Blazhko effect and 67 contact eclipsing binaries exhibit the OConnell effect. Since the period and amplitude of light variations of RR Lyrae variables depend on their chemical compositions, their photometric observations can be used to investigate distribution of metallicity along the direction perpendicular to the Galactic disk. We find that the metallicity of RR Lyrae stars shows large scatter at regions closer to the Galactic plane (e.g., -3.0 < [Fe/H] < 0) but tends to converge at [Fe/H]~ -1.7 at larger Galactic latitudes. This variation may be related to that the RRAB Lyrae stars in the Galactic halo come from globular clusters with different metallicity and vertical distances, i.e. OoI and OoII populations, favoring for the dual-halo model.
The Asteroid Terrestrial-impact Last Alert System (ATLAS) carries out its primary planetary defense mission by surveying about 13000 deg^2 at least four times per night. The resulting data set is useful for the discovery of variable stars to a magnit ude limit fainter than r~18, with amplitudes down to 0.01 mag for bright objects. Here we present a Data Release One catalog of variable stars based on analyzing 142 million stars measured at least 100 times in the first two years of ATLAS operations. Using a Lomb-Scargle periodogram and other variability metrics, we identify 4.7 million candidate variables which we analyze in detail. Through Space Telescope Science Institute, we publicly release lightcurves for all of them, together with a vector of 169 classification features for each star. We do this at the level of unconfirmed candidate variables in order to provide the community with a large set of homogeneously analyzed photometry and avoid pre-judging which types of objects others may find most interesting. We use machine learning to classify the candidates into fifteen different broad categories based on lightcurve morphology. About 10% (430,000 stars) pass extensive tests designed to screen out spurious variability detections: we label these as `probable variables. Of these, 230,000 receive specific classifications as eclipsing binaries, pulsating, Mira-type, or sinusoidal variables: these are the `classified variables. New discoveries among the probable variables number more than 300,000, while 150,000 of the classified variables are new, including about 10,000 pulsating variables, 2,000 Mira stars, and 70,000 eclipsing binaries.
Regular intrinsic brightness variations observed in many stars are caused by pulsations. These pulsations provide information on the global and structural parameters of the star. The pulsation periods range from seconds to years, depending on the com pactness of the star and properties of the matter that forms its outer layers. Here, we report the discovery of more than a dozen of previously unknown short-period variable stars: blue large-amplitude pulsators. These objects show very regular brightness variations with periods in the range of 20-40 min and amplitudes of 0.2-0.4 mag in the optical passbands. The phased light curves have a characteristic sawtooth shape, similar to the shape of classical Cepheids and RR Lyrae-type stars pulsating in the fundamental mode. The objects are significantly bluer than main sequence stars observed in the same fields, which indicates that all of them are hot stars. Follow-up spectroscopy confirms a high surface temperature of about 30,000 K. Temperature and colour changes over the cycle prove the pulsational nature of the variables. However, large-amplitude pulsations at such short periods are not observed in any known type of stars, including hot objects. Long-term photometric observations show that the variable stars are very stable over time. Derived rates of period change are of the order of 10^-7 per year and, in most cases, they are positive. According to pulsation theory, such large-amplitude oscillations may occur in evolved low-mass stars that have inflated helium-enriched envelopes. The evolutionary path that could lead to such stellar configurations remains unknown.
OmegaWhite is a wide-field, high cadence, synoptic survey targeting fields in the southern Galactic plane, with the aim of discovering short period variable stars. Our strategy is to take a series of 39 s exposures in the g band of a 1 square degree of sky lasting 2 h using the OmegaCAM wide field imager on the VLT Survey Telescope (VST). We give an overview of the initial 4 years of data which covers 134 square degrees and includes 12.3 million light curves. As the fields overlap with the VLT Survey Telescope Halpha Photometric Survey of the Galactic plane and Bulge (VPHAS+), we currently have $ugriHalpha$ photometry for ~1/3 of our fields. We find that a significant fraction of the light curves have been affected by the diffraction spikes of bright stars sweeping across stars within a few dozen of pixels over the two hour observing time interval due to the alt-az nature of the VST. We select candidate variable stars using a variety of variability statistics, followed by a manual verification stage. We present samples of several classes of short period variables, including: an ultra compact binary, a DQ white dwarf, a compact object with evidence of a 100 min rotation period, three CVs, one eclipsing binary with an 85 min period, a symbiotic binary which shows evidence of a 31 min photometric period, and a large sample of candidate delta Sct type stars including one with a 9.3 min period. Our overall goal is to cover 400 square degrees, and this study indicates we will find many more interesting short period variable stars as a result.
We characterize the first 40 Myr of evolution of circumstellar disks through a unified study of the infrared properties of members of young clusters and associations with ages from 2 Myr up to ~ 40 Myr: NGC 1333, NGC 1960, NGC 2232, NGC 2244, NGC 236 2, NGC 2547, IC 348, IC 2395, IC 4665, Chamaeleon I, Orion OB1a and OB1b, Taurus, the b{eta} Pictoris Moving Group, r{ho} Ophiuchi, and the associations of Argus, Carina, Columba, Scorpius-Centaurus, and Tucana-Horologium. Our work features: 1.) a filtering technique to flag noisy backgrounds, 2.) a method based on the probability distribution of deflections, P(D), to obtain statistically valid photometry for faint sources, and 3.) use of the evolutionary trend of transitional disks to constrain the overall behavior of bright disks. We find that the fraction of disks three or more times brighter than the stellar photospheres at 24 {mu}m decays relatively slowly initially and then much more rapidly by ~ 10 Myr. However, there is a continuing component until ~ 35 Myr, probably due primarily to massive clouds of debris generated in giant impacts during the oligarchic/chaotic growth phases of terrestrial planets. If the contribution from primordial disks is excluded, the evolution of the incidence of these oligarchic/chaotic debris disks can be described empirically by a log-normal function with the peak at 12 - 20 Myr, including ~ 13 % of the original population, and with a post-peak mean duration of 10 - 20 Myr.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا