ﻻ يوجد ملخص باللغة العربية
Let $X$ be a second countable locally compact Abelian group containing no subgroup topologically isomorphic to the circle group $mathbb{T}$. Let $mu$ be a probability distribution on $X$ such that its characteristic function $hatmu(y)$ does not vanish and $hatmu(y)$ for some $n geq 3$ satisfies the equation $$ prod_{j=1}^{n} hatmu(y_j + y) = prod_{j=1}^{n}hatmu(y_j - y), quad sum_{j=1}^{n} y_j = 0, quad y_1,dots,y_n,y in Y. $$ Then $mu$ is a convolution of a Gaussian distribution and a distribution supported in the subgroup of $X$ generated by elements of order 2.
We give a necessary and sufficient condition for symmetric infinitely divisible distribution to have Gaussian component. The result can be applied to approximation the distribution of finite sums of random variables. Particularly, it shows that for a
Given a domain G, a reflection vector field d(.) on the boundary of G, and drift and dispersion coefficients b(.) and sigma(.), let L be the usual second-order elliptic operator associated with b(.) and sigma(.). Under suitable assumptions that, in p
Consider finite sequences $X_{[1,n]}=X_1dots X_n$ and $Y_{[1,n]}=Y_1dots Y_n$ of length $n$, consisting of i.i.d. samples of random letters from a finite alphabet, and let $S$ and $T$ be chosen i.i.d. randomly from the unit ball in the space of symme
Consider an odd-sized jury, which determines a majority verdict between two equiprobable states of Nature. If each juror independently receives a binary signal identifying the correct state with identical probability $p$, then the probability of a co
The stochastic dynamics of biochemical networks are usually modelled with the chemical master equation (CME). The stationary distributions of CMEs are seldom solvable analytically, and numerical methods typically produce estimates with uncontrolled e