ترغب بنشر مسار تعليمي؟ اضغط هنا

A Framework for Structural Input/Output and Control Configuration Selection in Large-Scale Systems

118   0   0.0 ( 0 )
 نشر من قبل Soummya Kar
 تاريخ النشر 2013
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper addresses problems on the structural design of control systems taking explicitly into consideration the possible application to large-scale systems. We provide an efficient and unified framework to solve the following major minimization problems: (i) selection of the minimum number of manipulated/measured variables to achieve structural controllability/observability of the system, and (ii) selection of the minimum number of feedback interconnections between measured and manipulated variables such that the closed-loop system has no structurally fixed modes. Contrary to what would be expected, we show that it is possible to obtain a global solution for each of the aforementioned minimization problems using polynomial complexity algorithms in the number of the state variables of the system. In addition, we provide several new graph-theoretic characterizations of structural systems concepts, which, in turn, enable us to characterize all possible solutions to the above problems.



قيم البحث

اقرأ أيضاً

99 - Aivar Sootla 2015
In this paper, we consider the systems with trajectories originating in the nonnegative orthant becoming nonnegative after some finite time transient. First we consider dynamical systems (i.e., fully observable systems with no inputs), which we call eventually positive. We compute forward-invariant cones and Lyapunov functions for these systems. We then extend the notion of eventually positive systems to the input-output system case. Our extension is performed in such a manner, that some valuable properties of classical internally positive input-output systems are preserved. For example, their induced norms can be computed using linear programming and the energy functions have nonnegative derivatives.
We consider the effect of parametric uncertainty on properties of Linear Time Invariant systems. Traditional approaches to this problem determine the worst-case gains of the system over the uncertainty set. Whilst such approaches are computationally tractable, the upper bound obtained is not necessarily informative in terms of assessing the influence of the parameters on the system performance. We present theoretical results that lead to simple, convex algorithms producing parametric bounds on the $mathcal{L}_2$-induced input-to-output and state-to-output gains as a function of the uncertain parameters. These bounds provide quantitative information about how the uncertainty affects the system.
We introduce a hybrid (discrete--continuous) safety controller which enforces strict state and input constraints on a system---but only acts when necessary, preserving transparent operation of the original system within some safe region of the state space. We define this space using a Min-Quadratic Barrier function, which we construct along the equilibrium manifold using the Lyapunov functions which result from linear matrix inequality controller synthesis for locally valid uncertain linearizations. We also introduce the concept of a barrier pair, which makes it easy to extend the approach to include trajectory-based augmentations to the safe region, in the style of LQR-Trees. We demonstrate our controller and barrier pair synthesis method in simulation-based examples.
We address the problem of robust state reconstruction for discrete-time nonlinear systems when the actuators and sensors are injected with (potentially unbounded) attack signals. Exploiting redundancy in sensors and actuators and using a bank of unkn own input observers (UIOs), we propose an observer-based estimator capable of providing asymptotic estimates of the system state and attack signals under the condition that the numbers of sensors and actuators under attack are sufficiently small. Using the proposed estimator, we provide methods for isolating the compromised actuators and sensors. Numerical examples are provided to demonstrate the effectiveness of our methods.
Robust control is a core approach for controlling systems with performance guarantees that are robust to modeling error, and is widely used in real-world systems. However, current robust control approaches can only handle small system uncertainty, an d thus require significant effort in system identification prior to controller design. We present an online approach that robustly controls a nonlinear system under large model uncertainty. Our approach is based on decomposing the problem into two sub-problems, robust control design (which assumes small model uncertainty) and chasing consistent models, which can be solved using existing tools from control theory and online learning, respectively. We provide a learning convergence analysis that yields a finite mistake bound on the number of times performance requirements are not met and can provide strong safety guarantees, by bounding the worst-case state deviation. To the best of our knowledge, this is the first approach for online robust control of nonlinear systems with such learning theoretic and safety guarantees. We also show how to instantiate this framework for general robotic systems, demonstrating the practicality of our approach.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا