ﻻ يوجد ملخص باللغة العربية
We show how a single linearly polarized control field can produce a sharply tunable group velocity of a weak probe field at resonance in a four-level atomic configuration of alkali vapors. The dispersion can be switched from normal to anomalous along with vanishing absorption, just by changing intensity of the resonant control field. In addition, by allowing different intensities of the different polarization components of the control field, the anomalous dispersion can be switched back to the normal. This thereby creates a valley of anomaly in group index variation and offers two sets of control field intensities, for which the system behaves like a vacuum. The explicit analytical expressions for the probe coherence are provided along with all physical explanations. We demonstrate our results in $J = 1/2 leftrightarrow J = 1/2$ transition for D_1 lines in alkali atoms, in which one can obtain a group index as large as $3.2times10^{8}$ and as negative as $-1.5times10^{5}$ using a control field with power as low as 0.017 mW/cm$^2$ and 9.56 mW/cm$^2$ .
Ultralow-power diode-laser radiation is employed to induce photodesorption of cesium from a partially transparent thin-film cesium adsorbate on a solid surface. Using resonant Raman spectroscopy, we demonstrate that this photodesorption process enabl
An electrically-controllable, solid-state, reversible device for sourcing and sinking alkali vapor is presented. When placed inside an alkali vapor cell, both an increase and decrease of the rubidium vapor density by a factor of two are demonstrated
Quantum memories are a crucial technology for enabling large-scale quantum networks through synchronisation of probabilistic operations. Such networks impose strict requirements on quantum memory, such as storage time, retrieval efficiency, bandwidth
Precision sensing, and in particular high precision magnetometry, is a central goal of research into quantum technologies. For magnetometers, often trade-offs exist between sensitivity, spatial resolution, and frequency range. The precision, and thus
We describe the construction of a fast field cycling device capable of sweeping a 4-order-of-magnitude range of magnetic fields, from ~1mT to 7T, in under 700ms. Central to this system is a high-speed sample shuttling mechanism between a superconduct