ترغب بنشر مسار تعليمي؟ اضغط هنا

Type IIP supernova 2008in: the explosion of a normal red supergiant

118   0   0.0 ( 0 )
 نشر من قبل Victor Utrobin P.
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف V.P. Utrobin MPA




اسأل ChatGPT حول البحث

The explosion energy and the ejecta mass of a type IIP supernova make up the basis for the theory of explosion mechanism. So far, these parameters have only been determined for seven events. Type IIP supernova 2008in is another well-observed event for which a detailed hydrodynamic modeling can be used to derive the supernova parameters. Hydrodynamic modeling was employed to describe the bolometric light curve and the expansion velocities at the photosphere level. A time-dependent model for hydrogen ionization and excitation was applied to model the Halpha and Hbeta line profiles. We found an ejecta mass of 13.6 Msun, an explosion energy of 5.05x10^50 erg, a presupernova radius of 570 Rsun, and a radioactive Ni-56 mass of 0.015 Msun. The estimated progenitor mass is 15.5 Msun. We uncovered a problem of the Halpha and Hbeta description at the early phase, which cannot be resolved within a spherically symmetric model. The presupernova of SN 2008in was a normal red supergiant with the minimum mass of the progenitor among eight type IIP supernovae explored by means of the hydrodynamic modeling. The problem of the absence of type IIP supernovae with the progenitor masses <15 Msun in this sample remains open.

قيم البحث

اقرأ أيضاً

We report the identification of a source coincident with the position of the nearby type II-P supernova (SN) 2008bk in high quality optical and near-infrared pre-explosion images from the ESO Very Large Telescope (VLT). The SN position in the optical and near-infrared pre-explosion images is identified to within about +-70 and +-40 mas, respectively, using post-explosion Ks-band images obtained with the NAOS CONICA adaptive optics system on the VLT. The pre-explosion source detected in four different bands is precisely coincident with SN 2008bk and is consistent with being dominated by a single point source. We determine the nature of the point source using the STARS stellar evolutionary models and find that its colours and luminosity are consistent with the source being a red supergiant progenitor of SN 2008bk with an initial mass of 8.5 +- 1.0 Msun.
60 - V.P. Utrobin 2010
Unusually bright type IIP supernova (SN) 2009kf is studied employing the hydrodynamic modelling. We derived optimal values of the ejecta mass of 28.1 Msun, explosion energy of 2.2x10^{52} erg, and presupernova radius of 2x10^3 Rsun assuming that Ni-5 6 mass is equal to the upper limit of 0.4 Msun. We analyzed effects of the uncertainties in the extinction and Ni-56 mass and concluded that both the ejecta mass and explosion energy cannot be significantly reduced compared with the optimal values. The huge explosion energy of SN 2009kf indicates that the explosion is caused by the same mechanism which operates in energetic SNe Ibc (hypernovae), i.e., via a rapid disk accretion onto black hole. The ejecta mass combined with the black hole mass and the mass lost by stellar wind yields the progenitor mass of about 36 Msun. We propose a scenario in which massive binary evolution might result in the SN 2009kf event.
We present densely-sampled ultraviolet/optical photometric and low-resolution optical spectroscopic observations of the type IIP supernova 2013ab in the nearby ($sim$24 Mpc) galaxy NGC 5669, from 2 to 190d after explosion. Continuous photometric obse rvations, with the cadence of typically a day to one week, were acquired with the 1-2m class telescopes in the LCOGT network, ARIES telescopes in India and various other telescopes around the globe. The light curve and spectra suggest that the SN is a normal type IIP event with a plateau duration of $ sim80 $ days with mid plateau absolute visual magnitude of -16.7, although with a steeper decline during the plateau (0.92 mag 100 d$ ^{-1} $ in $ V $ band) relative to other archetypal SNe of similar brightness. The velocity profile of SN 2013ab shows striking resemblance with those of SNe 1999em and 2012aw. Following the Rabinak & Waxman (2011) prescription, the initial temperature evolution of the SN emission allows us to estimate the progenitor radius to be $ sim $ 800 R$_{odot}$, indicating that the SN originated from a red supergiant star. The distance to the SN host galaxy is estimated to be 24.3 Mpc from expanding photosphere method (EPM). From our observations, we estimate that 0.064 M$_{odot}$ of $^{56}$Ni was synthesized in the explosion. General relativistic, radiation hydrodynamical modeling of the SN infers an explosion energy of $ 0.35times10^{51} $ erg, a progenitor mass (at the time of explosion) of $ sim9 $ M$_{odot}$ and an initial radius of $ sim600 $ R$_{odot}$.
127 - Ben Davies , Emma R. Beasor 2020
By comparing the properties of Red Supergiant (RSG) supernova progenitors to those of field RSGs, it has been claimed that there is an absence of progenitors with luminosities $L$ above $log(L/L_odot) > 5.2$. This is in tension with the empirical upp er luminosity limit of RSGs at $log(L/L_odot) = 5.5$, a result known as the `Red Supergiant Problem. This has been interpreted as evidence for an upper mass threshold for the formation of black-holes. In this paper, we compare the observed luminosities of RSG SN progenitors with the observed RSG $L$-distribution in the Magellanic Clouds. Our results indicate that the absence of bright SN II-P/L progenitors in the current sample can be explained at least in part by the steepness of the $L$-distribution and a small sample size, and that the statistical significance of the Red Supergiant Problem is between 1-2$sigma$ . Secondly, we model the luminosity distribution of II-P/L progenitors as a simple power-law with an upper and lower cutoff, and find an upper luminosity limit of $log(L_{rm hi}/L_odot) = 5.20^{+0.17}_{-0.11}$ (68% confidence), though this increases to $sim$5.3 if one fixes the power-law slope to be that expected from theoretical arguments. Again, the results point to the significance of the RSG Problem being within $sim 2 sigma$. Under the assumption that all progenitors are the result of single-star evolution, this corresponds to an upper mass limit for the parent distribution of $M_{rm hi} = 19.2{rm M_odot}$, $pm1.3 {rm M_odot (systematic)}$, $^{+4.5}_{-2.3} {rm M_odot}$ (random) (68% confidence limits).
We present extensive ultraviolet (UV) and optical photometry, as well as dense optical spectroscopy for type II Plateau (IIP) supernova SN 2016X that exploded in the nearby ($sim$ 15 Mpc) spiral galaxy UGC 08041. The observations span the period from 2 to 180 days after the explosion; in particular, the Swift UV data probably captured the signature of shock breakout associated with the explosion of SN 2016X. It shows very strong UV emission during the first week after explosion, with contribution of $sim$ 20 -- 30% to the bolometric luminosity (versus $lesssim$ 15% for normal SNe IIP). Moreover, we found that this supernova has an unusually long rise time of about 12.6 $pm$ 0.5 days in the $R$ band (versus $sim$ 7.0 days for typical SNe IIP). The optical light curves and spectral evolution are quite similar to the fast-declining type IIP object SN 2013ej, except that SN 2016X has a relatively brighter tail. Based on the evolution of photospheric temperature as inferred from the $Swift$ data in the early phase, we derive that the progenitor of SN 2016X has a radius of about 930 $pm$ 70 R$_{odot}$. This large-size star is expected to be a red supergiant star with an initial mass of $gtrsim$ 19 -- 20 M$_{odot}$ based on the mass $--$ radius relation of the Galactic red supergiants, and it represents one of the most largest and massive progenitors found for SNe IIP.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا