ترغب بنشر مسار تعليمي؟ اضغط هنا

HERschel Observations of Edge-on Spirals (HEROES). I: Far-infrared morphology and dust mass determination

301   0   0.0 ( 0 )
 نشر من قبل Joris Verstappen
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف J. Verstappen




اسأل ChatGPT حول البحث

Context. Edge-on spiral galaxies with prominent dust lanes provide us with an excellent opportunity to study the distribution and properties of the dust within them. The HEROES project was set up to observe a sample of seven large edge-on galaxies across various wavelengths for this investigation. Aims. Within this first paper, we present the Herschel observations and perform a qualitative and quantitative analysis on them, and we derive some global properties of the far infrared and submillimetre emission. Methods. We determine horizontal and vertical profiles from the Herschel observations of the galaxies in the sample and describe the morphology. Modified black-body fits to the global fluxes, measured using aperture photometry, result in dust temperatures and dust masses. The latter values are compared to those that are derived from radiative transfer models taken from the literature. Results. On the whole, our Herschel flux measurements agree well with archival values. We find that the exponential horizontal dust distribution model often used in the literature generally provides a good description of the observed horizontal profiles. Three out of the seven galaxies show signatures of extended vertical emission at 100 and 160 {mu}m at the 5{sigma} level, but in two of these it is probably due to deviations from an exactly edge-on orientation. Only for NGC 4013, a galaxy in which vertically extended dust has already been detected in optical images, we can detect vertically extended dust, and the derived scaleheight agrees with the value estimated through radiative transfer modelling. Our analysis hints at a correlation between the dust scaleheight and its degree of clumpiness, which we infer from the difference between the dust masses as calculated from modelling of optical data and from fitting the spectral energy distribution of Herschel datapoints.



قيم البحث

اقرأ أيضاً

We present results of the detailed dust energy balance study for the seven large edge-on galaxies in the HEROES sample using 3D radiative transfer (RT) modelling. Based on available optical and near-infrared observations of the HEROES galaxies, we de rive the 3D distribution of stars and dust in these galaxies. For the sake of uniformity, we apply the same technique to retrieve galaxy properties for the entire sample: we use a stellar model consisting of a Sersic bulge and three double-exponential discs (a superthin disc for a young stellar population and thin and thick discs for old populations). For the dust component, we adopt a double-exponential disc with the new THEMIS dust-grain model. We fit oligochromatic radiative transfer (RT) models to the optical and near-infrared images with the fitting algorithm FitSKIRT and do panchromatic simulations with the SKIRT code at wavelengths ranging from ultraviolet to submillimeter. We confirm the previously stated dust energy balance problem in galaxies: for the HEROES galaxies, the dust emission derived from our RT calculations underestimates the real observations by a factor 1.5-4 for all galaxies except NGC 973 and NGC 5907 (apparently, the latter galaxy has a more complex geometry than we used). The comparison between our RT simulations and the observations at mid-infrared-submillimeter wavelengths shows that most of our galaxies exhibit complex dust morphologies (possible spiral arms, star-forming regions, more extended dust structure in the radial and vertical directions). We suggest that, in agreement with the results from Saftly et al. (2015), the large- and small-scale structure is the most probable explanation for the dust energy balance problem.
We investigate the dust energy balance for the edge-on galaxy IC 2531, one of the seven galaxies in the HEROES sample. We perform a state-of-the-art radiative transfer modelling based, for the first time, on a set of optical and near-infrared galaxy images. We show that taking into account near-infrared imaging in the modelling significantly improves the constraints on the retrieved parameters of the dust content. We confirm the result from previous studies that including a young stellar population in the modelling is important for explaining the observed stellar energy distribution. However, the discrepancy between the observed and modelled thermal emission at far-infrared wavelengths, the so-called dust energy balance problem, is still present: the model underestimates the observed fluxes by a factor of about two. We compare two different dust models, and find that dust parameters and thus the spectral energy distribution in the infrared domain are sensitive to the adopted dust model. In general, the THEMIS model reproduces the observed emission in the infrared wavelength domain better than the popular Zubko et al. BARE-GR-S model. Our study of IC 2531 is a pilot case for detailed and uniform radiative transfer modelling of the entire HEROES sample, which will shed more light on the strength and origins of the dust energy balance problem.
196 - F. Allaert 2015
Context. Edge-on galaxies can offer important insights in galaxy evolution as they are the only systems where the distribution of the different components can be studied both radially and vertically. The HEROES project was designed to investigate the interplay between the gas, dust, stars and dark matter (DM) in a sample of 7 massive edge-on spiral galaxies. Aims. In this second HEROES paper we present an analysis of the atomic gas content of 6 out of 7 galaxies in our sample. The remaining galaxy was recently analysed according to the same strategy. The primary aim of this work is to constrain the surface density distribution, the rotation curve and the geometry of the gas disks in a homogeneous way. In addition we identify peculiar features and signs of recent interactions. Methods. We construct detailed tilted-ring models of the atomic gas disks based on new GMRT 21-cm observations of NGC 973 and UGC 4277 and re-reduced archival HI data of NGC 5907, NGC 5529, IC 2531 and NGC 4217. Potential degeneracies between different models are resolved by requiring a good agreement with the data in various representations of the data cubes. Results. From our modelling we find that all but one galaxy are warped along the major axis. In addition, we identify warps along the line of sight in three galaxies. A flaring gas layer is required to reproduce the data only for one galaxy, but (moderate) flares cannot be ruled for the other galaxies either. A coplanar ring-like structure is detected outside the main disk of NGC 4217, which we suggest could be the remnant of a recent minor merger event. We also find evidence for a radial inflow of 15 +- 5 km/s in the disk of NGC 5529, which might be related to the ongoing interaction with two nearby companions. (Abridged)
We have obtained Herschel images at five wavelengths from 100 to 500 micron of a ~5.5x2.5 degree area centred on the local galaxy M31 (Andromeda), our nearest neighbour spiral galaxy, as part of the Herschel guaranteed time project HELGA. The main go als of HELGA are to study the characteristics of the extended dust emission, focusing on larger scales than studied in previous observations of Andromeda at an increased spatial resolution, and the obscured star formation. In this paper we present data reduction and Herschel maps, and provide a description of the far-infrared morphology, comparing it with features seen at other wavelengths. We use high--resolution maps of the atomic hydrogen, fully covering our fields, to identify dust emission features that can be associated to M31 with confidence, distinguishing them from emission coming from the foreground Galactic cirrus. Thanks to the very large extension of our maps we detect, for the first time at far-infrared wavelengths, three arc-like structures extending out to ~21, ~26 and ~31 kpc respectively, in the south-western part of M31. The presence of these features, hosting ~2.2e6 Msol of dust, is safely confirmed by their detection in HI maps. Overall, we estimate a total dust mass of ~5.8e7 Msol, about 78% of which is contained in the two main ring-like structures at 10 and 15 kpc, at an average temperature of 16.5 K. We find that the gas-to-dust ratio declines exponentially as a function of the galacto-centric distance, in agreement with the known metallicity gradient, with values ranging from 66 in the nucleus to ~275 in the outermost region. [Abridged]
Dusty debris discs around main sequence stars are thought to be the result of continuous collisional grinding of planetesimals in the system. The majority of these systems are unresolved and analysis of the dust properties is limited by the lack of i nformation regarding the dust location.vThe Herschel DUNES key program is observing 133 nearby, Sun-like stars (<20 pc, FGK spectral type) in a volume limited survey to constrain the absolute incidence of cold dust around these stars by detection of far infrared excess emission at flux levels comparable to the Edgeworth-Kuiper belt (EKB). We have observed the Sun-like star HD 207129 with Herschel PACS and SPIRE. In all three PACS bands we resolve a ring-like structure consistent with scattered light observations. Using {alpha} Bootis as a reference point spread function (PSF), we deconvolved the images, clearly resolving the inner gap in the disc at both 70 and 100 {mu}m. We have resolved the dust-producing planetesimal belt of a debris disc at 100 {mu}m for the first time. We measure the radial profile and fractional luminosity of the disc, and compare the values to those of discs around stars of similar age and/or spectral type, placing this disc in context of other resolved discs observed by Herschel/DUNES.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا