ﻻ يوجد ملخص باللغة العربية
We consider Liouville-type and partial regularity results for the nonlinear fourth-order problem $$ Delta^2 u=|u|^{p-1}u {in} R^n,$$ where $ p>1$ and $nge1$. We give a complete classification of stable and finite Morse index solutions (whether positive or sign changing), in the full exponent range. We also compute an upper bound of the Hausdorff dimension of the singular set of extremal solutions. Our approach is motivated by Flemings tangent cone analysis technique for minimal surfaces and Federers dimension reduction principle in partial regularity theory. A key tool is the monotonicity formula for biharmonic equations.
We prove that the Dirichlet problem for the Lane-Emden equation in a half-space has no positive solution which is monotone in the normal direction. As a consequence, this problem does not admit any positive classical solution which is bounded on fini
We give a soft proof of Albertis Luzin-type theorem in [1] (G. Alberti, A Lusintype theorem for gradients, J. Funct. Anal. 100 (1991)), using elementary geometric measure theory and topology. Applications to the $C^2$-rectifiability problem are also discussed.
In this note, we study Liouville type theorem for conformal Gaussian curvature equation (also called the mean field equation) $$ -Delta u=K(x)e^u, in R^2 $$ where $K(x)$ is a smooth function on $R^2$. When $K(x)=K(x_1)$ is a sign-changing smooth func
In this note, we improved the Liouville type theorem for the Beltrami flows. Two different methods are used to prove it. One is the monotonicity method, and the other is proof by contradiction. The conditions that we proposed on Beltrami flows are si
In this paper we shall give an analytic proof of the fact that the Liouville energy on a topological two sphere is bounded from below. Our proof does not rely on the uniformization theorem and the Onofri inequality, thus it is essentially needed in t