ترغب بنشر مسار تعليمي؟ اضغط هنا

Fine topological structure of coherent complex light created by carbon nanocomposites in LC

187   0   0.0 ( 0 )
 نشر من قبل Nikolai Lebovka I
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Fine complex light structure, optical singularities and electroconductivty of nematic 5CB doped by multi-walled carbon nanotubes (MWCNTs) were investigated. MWCNTs gather spontaneously to system of micro scale clusters with random fractal borders at small enough concentration. They are surrounded by the striped micro scale cladding which creates optical singularities in propagating laser beam. Applied transverse electric field above the Freedericksz initiates homeotropic arrangement of 5CB and the striped inversion walls between nanotubes clusters what diminishes free energy of a composite. Theory of their appearance and properties was built. Simultaneously the striped cladding disappears what can be treated as new mechanism of structure orientation nonlinearity in nonlinear photonics. Polarization singularities (circular C points) were measured firstly. Percolation of clusters enhances strongly electrical conductivity of the system and creates inversion walls even without applied field. Carbon nanotubes composites in LC form bridge between nano dopants and micro/macro system and are promising for applications. Elaborated protocol of singular optics inspection and characterization of LC nanocomposites is promising tool for applications in modern nanosience and technique.



قيم البحث

اقرأ أيضاً

Microstructure, phase transitions, electrical conductivity, and optical and electrooptical properties of multiwalled carbon nanotubes (NTs), dispersed in the cholesteric liquid crystal (cholesteryl oleyl carbonate, COC), nematic 5CB and their mixture s, were studied in the temperature range between 255 K and 363 K. The relative concentration X=COC/(COC+5CB)was varied within 0.0-1.0. The concentration $C_p$ of NTs was varied within 0.01-5% wt. The value of X affected agglomeration and stability of NTs inside COC+5CB. High-quality dispersion, exfoliation, and stabilization of the NTs were observed in COC solvent (good solvent). From the other side, the aggregation of NTs was very pronounced in nematic 5CB solvent (bad solvent). The dispersing quality of solvent influenced the percolation concentration $C_p$, corresponding to transition between the low conductive and high conductive states: e.g., percolation was observed at $C_p=1%$ and $C_p=0.1%$ for pure COC and 5CB, respectively. The effects of thermal pre-history on the heating-cooling hysteretic behavior of electrical conductivity were studied. The mechanism of dispersion of NTs in COC+5CB mixtures is discussed. Utilization of the mixtures of good and bad solvents allowed fine regulation of the dispersion, stability and electrical conductivity of LC+NTs composites. The mixtures of COC and 5CB were found to be promising for application as functional media with controllable useful chiral and electrophysical properties.
172 - Yuhan Li , Faxiang Qin , Huan Wang 2017
Interfaces remain one of the major issues in limiting the understanding and designing polymer nanocomposites due to their complexity and pivotal role in determining the ultimate composites properties. In this study, we take multi-walled carbon nanotu bes/silicone rubber nanocomposites as a representative example, and have for the first time studied the correlation between high-frequency dielectric dispersion and static/dynamic interfacial characteristics. We have found that the interface together with other meso-structural parameters (volume fraction, dispersion, agglomeration) play decisive role in formulating the dielectric patterns. The calculation of the relaxation times affords the relative importance of interfacial polarization to dipolar polarization in resultant dielectric relaxation. Dielectric measurements coupled with cyclic loading further reveals the remarkable capability of dielectric frequency dispersion in capturing the evolution of interfacial properties, such as a particular interface reconstruction process occurred to the surfactant-modified samples. All these results demonstrate that high-frequency dielectric spectroscopy is instrumental to probing both static and dynamic meso-structural characteristics, especially effective for the composites with relative weak interfaces which remains a mission impossible for many other techniques. The insights provided here based on the analyses of dielectric frequency dispersion will pave the way for optimized design and precise engineering of meso-structure in polymer nanocomposites.
The neutral biexciton cascade of single quantum dots is a promising source of entangled photon pairs. The character of the entangled state is determined by the energy difference between the excitonic eigenstates known as fine-structure splitting (FSS ). Here we reduce the magnitude of the FSS by simultaneously using two independent tuning mechanisms: in-plane magnetic field and vertical electric field. We observe that there exists a minimum possible FSS in each quantum dot which is independent of these tuning mechanisms. However, with simultaneous application of electric and magnetic fields, we show the FSS can be reduced to its minimum value as the energy of emission is tuned over several meV with a 5-T magnet.
We report electrical conductivity measurements of Polymethyl-methacrylate filled by onion-like carbon particles with primary particle size of $approx 5$ nm. We shown that the conductivity $sigma$ is exceptionally high even at very low loadings, and t hat its low-temperature dependence follows a Coulomb gap regime at atmospheric pressure and an activated behavior at a pressure of $2$ GPa. We interpret this finding in terms of the enhancement under the applied pressure of the effective dielectric permittivity within the aggregates of onion-like carbons, which improves the screening of the Coulomb interaction and reduces the optimal hopping distance of the electrons.
We present a comparison between Fe K-edge x-ray absorption spectra of carbonmonoxy-myoglobin and its simulation based on density-functional theory determination of the structure and vibrations and spectral simulation with multiple-scattering theory. An excellent comparison is obtained for the main part of the molecular structure without any structural fitting parameters. The geometry of the CO ligand is reliably determined using a synergic approach to data analysis. The methodology underlying this approach is expected to be especially useful in similar situations in which high-resolution data for structure and vibrations are available.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا