ترغب بنشر مسار تعليمي؟ اضغط هنا

The distance to NGC1316 (Fornax A): yet another curious case

124   0   0.0 ( 0 )
 نشر من قبل Michele Cantiello
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Michele Cantiello




اسأل ChatGPT حول البحث

The distance of NGC1316, the brightest galaxy in Fornax, is an interesting test for the cosmological distance scale. First, because Fornax is the 2nd largest cluster of galaxies at <~25 Mpc after Virgo and, in contrast to Virgo, has a small line-of-sight depth; and second, because NGC1316 is the galaxy with the largest number of detected SNeIa, giving the opportunity to test the consistency of SNeIa distances internally and against other indicators. We measure SBF mags in NGC1316 from ground and space-based imaging data, providing a homogeneous set of measurements over a wide wavelength interval. The SBF, coupled with empirical and theoretical calibrations, are used to estimate the distance to the galaxy. We present the first B-band SBF measurements of NGC1316 and use them together with the optical and near-IR SBF data to analyze the properties of field stars. Our distance modulus m-M=31.59 +-0.05(stat) +-0.14(sys), when placed in a consistent Cepheid distance scale, agrees with the results from other indicators. However, our result is ~17% larger than the most recent estimate based on SNeIa. Possible explanations for this disagreement are the uncertainties on internal extinction, or calibration issues. Concerning the stellar population analysis, we confirm earlier results from other indicators: the field stars in NGC1316 are dominated by a solar metallicity, intermediate age component. A substantial mismatch exists between B-band SBF models and data, a behavior that can be accounted for by an enhanced percentage of hot horizontal branch stars. Our study of the SBF distance to NGC1316, and the comparison with distances from other indicators, raises some concern about the homogeneity between the calibrations of different indicators. If not properly placed in the same reference scale, significant differences can occur, with dramatic impact on the cosmological distance ladder.



قيم البحث

اقرأ أيضاً

258 - Tracy E. Clarke 2011
Abell 2256 is a rich, nearby (z=0.0594) galaxy cluster that has significant evidence of merger activity. We present new radio and X-ray observations of this system. The low-frequency radio images trace the diffuse synchrotron emission of the Mpc-scal e radio halo and relics as well as a number of recently discovered, more compact, steep spectrum sources. The spectral index across the relics steepens from the north-west toward the south-east. Analysis of the spectral index gradients between low and and high-frequencies shows spectral differences away from the north-west relic edge such that the low-frequency index is significantly flatter than the high frequency spectral index near the cluster core. This trend would be consistent with an outgoing merger shock as the origin of the relic emission. New X-ray data from XMM-Newton reveal interesting structures in the intracluster medium pressure, entropy and temperature maps. The pressure maps show an overall low pressure core co-incident with the radio halo emission, while the temperature maps reveal multiple regions of cool emission within the central regions of Abell 2256. The two cold fronts in Abell 2256 both appear to have motion in similar directions.
The Hubble Space Telescope is being used to measure accurate Cepheid distances to nearby galaxies with the ultimate aim of determining the Hubble constant, H_0. For the first time, it has become feasible to use Cepheid variables to derive a distance to a galaxy in the southern hemisphere cluster of Fornax. Based on the discovery of 37 Cepheids in the Fornax galaxy NGC 1365, a distance to this galaxy of 18.6 +/- 0.6 Mpc (statistical error only) is obtained. This distance leads to a value of H_0 = 70 +/- 7 (random) +/- 18 (systematic) km/sec/Mpc in good agreement with estimates of the Hubble constant further afield.
We carry out a test of the radial acceleration relation (RAR) for galaxy clusters from two different catalogs compiled in literature, as an independent cross-check of two recent analyses, which reached opposite conclusions. The datasets we considered include a Chandra sample of 12 clusters and the X-COP sample of 12 clusters. For both the samples, we find that the residual scatter is small (0.11-0.14 dex), although the best-fit values for the Chandra sample have large error bars. Therefore, we argue that at least one of these cluster samples (X-COP) obeys the radial acceleration relation. However, since the best-fit parameters are discrepant with each other as well as the previous estimates, we argue that the RAR is not universal. For both the catalogs, the acceleration scale, which we obtain is about an order of magnitude larger than that obtained for galaxies, and is agreement with both the recent estimates.
186 - B.F. Madore 2007
The object NGC6908 was once thought to be simply a surface-brightness enhancement in the eastern spiral arm of the nearby spiral galaxy NGC6907. Based on an examination of near-infrared imaging, the object is shown in fact to be a lenticular S0(6/7) galaxy hidden in the optical glare of the disk and spiral structure of the larger galaxy. New radial velocities of NGC6908 (3,060+/-16 (emission); 3,113+/-73 km/s (absorption)) have been obtained at the Baade 6.5m and the duPont 2.5m telescopes at Las Campanas, Chile placing NGC6908 at the same expansion-velocity distance as NGC6907 (3,190+/-5 km/s), eliminating the possibility of a purely chance line-of-sight coincidence. The once-enigmatic asymmetries in the disk and outer spiral structure of NGC6907 are now explained as being due to an advanced merger event. Newly discovered tails and debris in the outer reaches of this galaxy further support the merger scenario for this system. This pair of galaxies is a rather striking example of two objects discovered over 100 years ago, whose true nature was lost until modern detectors operating at infrared wavelengths gave us a new (high-contrast) look. Other examples of embedded merger remnants may also reveal themselves in the growing samples of near-infrared imaging of nearby galaxies; and a pilot study does reveal several other promising candidates for follow-up observations.
In the modern search for life elsewhere in the Universe, we are broadly looking for the following: the planets similar to Earth - physical indicators of habitability, and the manifestation of life - the biological signatures. A biosignature is a meas ured parameter that has a high probability of being caused by the living organisms, either atmospheric gas species or some surface features. Therefore, the focus of a search is on a product or phenomena produced by the living systems, mostly by microorganisms as these are the most abundant on our planet like, say, methane. However, we may need to distinguish the terms `biosignature and `bioindicator. A biosignature is what living organisms produce - a bioproduct, while a bioindicator may be anything necessary for life as we know it, such as water or a rocky planet. Oxygen in this case is a double biomarker; first, it is a byproduct of oxygenic photosynthesis and, second, it is a signature of a complex life, because complex highly organized life requires high levels of oxygen. It is possible that there are other such bioindicators. For example, in the atmospheric compositions of terrestrial planets in our Solar System (including Titan), argon is one of the major constituents, moreover it was recently acknowledged to be a `biologically active gas, exhibiting organprotective and neuroprotective properties, especially under hypoxic conditions. Here we propose that argon in the atmosphere of a rocky planet is a bioindicator of a highly organized life, provided that the planet is already deemed potentially habitable: with water, atmosphere, and of a certain age allowing for the complex life to evolve. We also delineate its possible detection methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا