ﻻ يوجد ملخص باللغة العربية
We develop an analytical model for the accretion and gravitational drag on a point mass that moves hypersonically in the midplane of a gaseous disk with a Gaussian vertical density stratification. Such a model is of interest for studying the interaction between a planet and a protoplanetary disk, as well as the dynamical decay of massive black holes in galactic nuclei. The model considers that the flow is ballistic, and gives fully analytical expressions for both the accretion rate onto the point mass, and the gravitational drag it suffers. The expressions are further simplified by taking the limits of a thick, and of a thin disk. The results for the thick disk reduce correctly to those for a uniform density environment (Canto et al. 2011). We find that for a thin disk (small vertical scaleheight compared to the gravitational radius) the accretion rate is proportional to the mass of the moving object and to the surface density of the disk, while the drag force is independent of the velocity of the object. The gravitational deceleration of the hypersonic perturber in a thin disk was found to be independent of its parameters (i.e. mass or velocity) and depends only on the surface mass density of the disk. The predictions of the model are compared to the results of three-dimensional hydrodynamical simulations, with a reasonable agreement.
The electrical power consumed by typical magnetic hard disk drives (HDD) not only increases linearly with the number of spindles but, more significantly, it increases as very fast power-laws of speed (RPM) and diameter. Since the theoretical basis fo
We report the serendipitous discovery of a quadruply-lensed source behind the z=0.095 edge-on disk galaxy 2MASXJ13170000-1405187, based on public imaging survey data from Pan-STARRS PS1 and the VISTA Hemisphere Survey. Follow-up imaging from Magellan
We report on interferometric observations of a face-on accretion system around the High-Mass young stellar object, G353.273+0.641. The innermost accretion system of 100 au radius was resolved in a 45 GHz continuum image taken with the Jansky-Very Lar
We evaluate the horseshoe drag exerted on a low-mass planet embedded in a gaseous disk, assuming the disks flow in the coorbital region to be adiabatic. We restrict this analysis to the case of a planet on a circular orbit, and we assume a steady flo
We investigate the unsaturated horseshoe drag exerted on a low-mass planet by an isothermal gaseous disk. In the globally isothermal case, we use a formal- ism, based on the use of a Bernoulli invariant, that takes into account pressure effects, and