ترغب بنشر مسار تعليمي؟ اضغط هنا

Higgs Decays in the Low Scale Type I See-Saw Model

61   0   0.0 ( 0 )
 نشر من قبل Emiliano Molinaro
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The couplings of the low scale type I see-saw model are severely constrained by the requirement of reproducing the correct neutrino mass and mixing parameters, by the non-observation of lepton number and charged lepton flavour violating processes and by electroweak precision data. We show that all these constraints still allow for the possibility of an exotic Higgs decay channel into a light neutrino and a heavy neutrino with a sizable branching ratio. We also estimate the prospects to observe this decay at the LHC and discuss its complementarity to the indirect probes of the low scale type I see-saw model from experiments searching for the $muto egamma$ decay.

قيم البحث

اقرأ أيضاً

The arbitrariness of Yukawa couplings can be reduced by the imposition of some flavor symmetries and/or by the realization of texture zeros. We review neutrino Yukawa textures with zeros within the framework of the type-I seesaw with three heavy righ t chiral neutrinos and in the basis where the latter and the charged leptons are mass diagonal. An assumed non-vanishing mass of every ultralight neutrino and the observed non-decoupling of any neutrino generation allow a maximum of four zeros in the Yukawa coupling matrix $Y_ u$ in family space. There are seventy two such textures. We show that the requirement of an exact $mutau$ symmetry, coupled with the observational constraints, reduces these seventy two allowed textures to only four corresponding to just two different forms of the light neutrino mass matrix $M_{ u A}/M_{ u B}$, resulting in an inverted/normal mass ordering. The effect of each of these on measurable quantities can be described, apart from an overall factor of the neutrino mass scale, in terms of two real parameters and a phase angle all of which are within very constrained ranges. The masses and Majorana phases of ultralight neutrinos are predicted within definite ranges with $3sigma$ laboratory and cosmological observational inputs. The rate for $0 ubetabeta$ decay, though generally below the reach of planned experiments, could approach it in some parameteric regions. Within the same framework, we also study Yukawa textures with a fewer number of zeros, but with exact $mutau$ symmetry. We further formulate the detailed scheme of the explicit breaking of $mutau$ symmetry in terms of three small parameters for allowed four zero textures. The observed sizable mixing between the first and third generations of neutrinos is shown to follow for a suitable choice of these symmetry breaking parameters.
We show that the inverse see-saw is the most natural way of implementing neutrino masses in the Littlest Higgs model with T-parity. The three extra quasi-Dirac neutrinos are needed to cancel the quadratically divergent contributions of the mirror lep tons to the Higgs mass. If the T-parity of the heavy neutrino singlets is chosen to be even, their contributions to lepton flavor violating transitions are one-loop finite. The most stringent limits on this scenario result from the non-observation of these transitions. Constraints on neutrino mixing imply an upper bound on the mass of the T-odd mirror leptons at the reach of the LHC and/or future colliders.
The type-II see-saw mechanism based on the annexation of the Standard Model by weak gauge triplet scalar field proffers a natural explanation for the very minuteness of neutrino masses. Noting that the phenomenology for the non-degenerate triplet Hig gs spectrum is substantially contrasting than that for the degenerate one, we perform a comprehensive study for an extensive model parameter space parametrised by the triplet scalar vacuum expectation value (VEV), the mass-splitting between the triplet-like doubly and singly charged scalars and the mass of the doubly charged scalar. Considering all Drell-Yan production mechanisms for the triplet-like scalars and taking into account the all-encompassing complexity of their decays, we derive the most stringent 95% CL lower limits on the mass of the doubly charged scalar for a vast model parameter space by implementing already existing direct collider searches by CMS and ATLAS. These estimated limits are beyond those from the existing LHC searches by approximately 50-230 GeV. However, we also find that a specific region of the parameter space is not constrained by the LHC searches. Then, we forecast future limits by extending an ATLAS search at high-luminosity, and we propose a search strategy that yields improved limits for a part of the parameter space.
159 - Werner Rodejohann 2008
The see-saw mechanism to generate small neutrino masses is reviewed. After summarizing our current knowledge about the low energy neutrino mass matrix we consider reconstructing the see-saw mechanism. Low energy neutrino physics is not sufficient to reconstruct see-saw, a feature which we refer to as ``see-saw degeneracy. Indirect tests of see-saw are leptogenesis and lepton flavor violation in supersymmetric scenarios, which together with neutrino mass and mixing define the framework of see-saw phenomenology. Several examples are given, both phenomenological and GUT-related. Variants of the see-saw mechanism like the type II or triplet see-saw are also discussed. In particular, we compare many general aspects regarding the dependence of LFV on low energy neutrino parameters in the extreme cases of a dominating conventional see-saw term or a dominating triplet term. For instance, the absence of mu -> e gamma or tau -> e gamma in the pure triplet case means that CP is conserved in neutrino oscillations. Scanning models, we also find that among the decays mu -> e gamma, tau -> e gamma and tau -> mu gamma the latter one has the largest branching ratio in (i) SO(10) type I see-saw models and in (ii) scenarios in which the triplet term dominates in the neutrino mass matrix.
The See-Saw mechanism provides a nice way to explain why neutrino masses are so much lighter than their charged lepton partners. It also provides a nice way to explain baryon asymmetry in our universe via the leptogenesis mechanism. In this talk we r eview leptogenesis and LHC physics in a See-Saw model proposed in 1989, now termed the Type III See-Saw model. In this model, $SU(2)_L$ triplet leptons are introduced with the neutral particles of the triplets playing the role of See-Saw. The triplet leptons have charged partners with standard model gauge interactions resulting in many new features. The gauge interactions of these particles make it easier for leptognesis with low masses, as low as a TeV is possible. The gauge interactions also make the production and detection of triplet leptons at LHC possible. The See-Saw mechanism and leptogenesis due to Type III See-Saw may be tested at LHC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا