ترغب بنشر مسار تعليمي؟ اضغط هنا

PTF11kx: A Type-Ia Supernova with a Symbiotic Nova Progenitor

107   0   0.0 ( 0 )
 نشر من قبل Benjamin Dilday
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

There is a consensus that Type-Ia supernovae (SNe Ia) arise from the thermonuclear explosion of white dwarf stars that accrete matter from a binary companion. However, direct observation of SN Ia progenitors is lacking, and the precise nature of the binary companion remains uncertain. A temporal series of high-resolution optical spectra of the SN Ia PTF 11kx reveals a complex circumstellar environment that provides an unprecedentedly detailed view of the progenitor system. Multiple shells of circumsteller are detected and the SN ejecta are seen to interact with circumstellar material (CSM) starting 59 days after the explosion. These features are best described by a symbiotic nova progenitor, similar to RS Ophiuchi.



قيم البحث

اقرأ أيضاً

We derive the mass of the white dwarf in the eclipsing recurrent nova U Sco from the radial velocity semi-amplitudes of the primary and secondary stars. Our results give a high white dwarf mass of M_1 = 1.55 pm 0.24M_odot, consistent with the thermon uclear runaway model of recurrent nova outbursts. We confirm that U Sco is the best Type Ia supernova progenitor known, and predict that the time to explosion is within ~700,000 years.
The optical transient PTF11kx exhibited both the characteristic spectral features of Type Ia supernovae (SNe Ia) and the signature of ejecta interacting with circumstellar material (CSM) containing hydrogen, indicating the presence of a nondegenerate companion. We present an optical spectrum at $1342$ days after peak from Keck Observatory, in which the broad component of H$alpha$ emission persists with a similar profile as in early-time observations. We also present $Spitzer$ IRAC detections obtained $1237$ and $1818$ days after peak, and an upper limit from $HST$ ultraviolet imaging at $2133$ days. We interpret our late-time observations in context with published results - and reinterpret the early-time observations - in order to constrain the CSMs physical parameters and compare to theoretical predictions for recurrent nova systems. We find that the CSMs radial extent may be several times the distance between the star and the CSMs inner edge, and that the CSM column density may be two orders of magnitude lower than previous estimates. We show that the H$alpha$ luminosity decline is similar to other SNe with CSM interaction, and demonstrate how our infrared photometry is evidence for newly formed, collisionally heated dust. We create a model for PTF11kxs late-time CSM interaction and find that X-ray reprocessing by photoionization and recombination cannot reproduce the observed H$alpha$ luminosity, suggesting that the X-rays are thermalized and that H$alpha$ radiates from collisional excitation. Finally, we discuss the implications of our results regarding the progenitor scenario and the geometric properties of the CSM for the PTF11kx system.
PTF11kx was a Type Ia supernova (SN Ia) that showed time-variable absorption features, including saturated Ca II H&K lines that weakened and eventually went into emission. The strength of the emission component of H{alpha} increased, implying that th e SN was undergoing significant interaction with its circumstellar medium (CSM). These features were blueshifted slightly and showed a P-Cygni profile, likely indicating that the CSM was directly related to, and probably previously ejected by, the progenitor system itself. These and other observations led Dilday et al. (2012) to conclude that PTF11kx came from a symbiotic nova progenitor like RS Oph. In this work we extend the spectral coverage of PTF11kx to 124-680 rest-frame days past maximum brightness. These spectra of PTF11kx are dominated by H{alpha} emission (with widths of ~2000 km/s), strong Ca II emission features (~10,000 km/s wide), and a blue quasi-continuum due to many overlapping narrow lines of Fe II. Emission from oxygen, He I, and Balmer lines higher than H{alpha} is weak or completely absent at all epochs, leading to large observed H{alpha}/H{beta} intensity ratios. The broader (~2000 km/s) H{alpha} emission appears to increase in strength with time for ~1 yr, but it subsequently decreases significantly along with the Ca II emission. Our latest spectrum also indicates the possibility of newly formed dust in the system as evidenced by a slight decrease in the red wing of H{alpha}. During the same epochs, multiple narrow emission features from the CSM temporally vary in strength. The weakening of the H{alpha} and Ca II emission at late times is possible evidence that the SN ejecta have overtaken the majority of the CSM and agrees with models of other strongly interacting SNe Ia. The varying narrow emission features, on the other hand, may indicate that the CSM is clumpy or consists of multiple thin shells.
The explosive origin of the young supernova remnant (SNR) 3C 397 (G41.1-0.3) is debated. Its elongated morphology and proximity to a molecular cloud are suggestive of a core-collapse (CC) SN origin, yet recent X-ray studies of heavy metals show chemi cal yields and line centroid energies consistent with a Type Ia SN. In this paper, we analyze the full X-ray spectrum from 0.7-10 keV of 3C 397 observed with Suzaku and compare the line centroid energies, fluxes, and elemental abundances of intermediate-mass and heavy metals (Mg to Ni) to Type Ia and CC hydrodynamical model predictions. Based on the results, we conclude that 3C 397 likely arises from an energetic Type Ia explosion in a high-density ambient medium, and we show that the progenitor was a near Chandrasekhar mass white dwarf.
We present Hubble Space Telescope observations and photometric measurements of the Type Ia supernova (SN Ia) SN 2013aa 1500 days after explosion. At this epoch, the luminosity is primarily dictated by the amounts of radioactive ${}^{57}textrm{Co}$ an d ${}^{55}textrm{Fe}$, while at earlier epochs, the luminosity depends on the amount of radioactive ${}^{56}textrm{Co}$. The ratio of odd-numbered to even-numbered isotopes depends significantly on the density of the progenitor white dwarf during the SN explosion, which, in turn, depends on the details of the progenitor system at the time of ignition. From a comprehensive analysis of the entire light curve of SN 2013aa, we measure a $M({}^{57}textrm{Co})/M({}^{56}textrm{Co})$ ratio of $0.02^{+0.01}_{-0.02}$, which indicates a relatively low central density for the progenitor white dwarf at the time of explosion, consistent with double-degenerate progenitor channels. We estimate $M({}^{56}textrm{Ni}) = 0.732 pm 0.151:mathrm{M_{odot}}$, and place an upper limit on the abundance of ${}^{55}textrm{Fe}$. A recent study reported a possible correlation between $M({}^{57}textrm{Co})/M({}^{56}textrm{Co})$ and stretch for four SNe Ia. SN 2013aa, however, does not fit this trend, indicating either SN 2013aa is an extreme outlier or the correlation does not hold up with a larger sample. The $M({}^{57}textrm{Co})/M({}^{56}textrm{Co})$ measured for the expanded sample of SNe Ia with photometry at extremely late times has a much larger range than that of explosion models, perhaps limiting conclusions about SN Ia progenitors drawn from extremely late-time photometry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا