ﻻ يوجد ملخص باللغة العربية
Symmetry reduction by the method of slices is applied to pipe flow in order to quotient the stream-wise translation and azimuthal rotation symmetries of turbulent flow states. Within the symmetry-reduced state space, all travelling wave solutions reduce to equilibria, and all relative periodic orbits reduce to periodic orbits. Projections of these solutions and their unstable manifolds from their $infty$-dimensional symmetry-reduced state space onto suitably chosen 2- or 3-dimensional subspaces reveal their interrelations and the role they play in organising turbulence in wall-bounded shear flows. Visualisations of the flow within the slice and its linearisation at equilibria enable us to trace out the unstable manifolds, determine close recurrences, identify connections between different travelling wave solutions, and find, for the first time for pipe flows, relative periodic orbits that are embedded within the chaotic attractor, which capture turbulent dynamics at transitional Reynolds numbers.
For wall-bounded turbulent flows, Townsends attached eddy hypothesis proposes that the logarithmic layer is populated by a set of energetic and geometrically self-similar eddies. These eddies scale with a single length scale, their distance to the wa
Local dissipation scales are a manifestation of the intermittent small-scale nature of turbulence. We report the first experimental evaluation of the distribution of local dissipation scales in turbulent pipe flows for a range of Reynolds numbers, 2.
Using various techniques from dynamical systems theory, we rigorously study an experimentally validated model by [Barkley et al., Nature, 526:550-553, 2015], which describes the rise of turbulent pipe flow via a PDE system of reduced complexity. The
This paper presents a method for calculating the wall shear rate in pipe turbulent flow. It collapses adequately the data measured in laminar flow and turbulent flow into a single flow curve and gives the basis for the design of turbulent flow viscom
The spectral model of Perry, Henbest & Chong (1986) predicts that the integral length-scale varies very slowly with distance to the wall in the intermediate layer. The only way for the integral length scales variation to be more realistic while keepi