ﻻ يوجد ملخص باللغة العربية
Collisions between electrically charged particles and neutral atoms are central for understanding the dynamics of neutral gases and plasmas in a variety of physical situaziones of terrestrial and astronomical interest. Specifically, redistribution of angular momentum states within the degenerate shell of highly excited Rydberg atoms occurs efficiently in distant collisions with ions. This process is crucial in establishing the validity of the local thermal equilibrium assumption and may also play a role in determining a precise ionization fraction in primordial recombination. We provide an accurate expression for the non-perturbative rate coefficient of collsions between protons and H(n_l) ending in a final state H(n_l), with n being the principal quantum number and l,l the initial and final angular momentum quantum numbers, respectively. The validity of this result is confirmed by results of classical trajectory Monte Carlo simulations. Previous results, obtained by Pengelly and Seaton only for dipole-allowed transitions, l--->l+-1, overestimate the l-changing collisional rate approximately by a factor of six, and the physical origin of this overestimation is discussed.
Cosmological models can be constrained by determining primordial abundances. Accurate predictions of the He I spectrum are needed to determine the primordial helium abundance to a precision of $< 1$% in order to constrain Big Bang Nucleosynthesis mod
Aims: We present the first measurements of the solar-wind angular-momentum (AM) flux recorded by the Solar Orbiter spacecraft. Our aim is the validation of these measurements to support future studies of the Suns AM loss. Methods: We combine 60-minut
Light charged particles emitted by the projectile-like fragment were measured in the direct and reverse collision of $^{93}$Nb and $^{116}$Sn at 25 AMeV. The experimental multiplicities of Hydrogen and Helium particles as a function of the primary ma
The mechanism of heating for hot, dilute, and turbulent plasmas represents a long-standing problem in space physics, whose implications concern both near-Earth environments and astrophysical systems. In order to explore the possible role of interpart
The PHENIX collaboration has measured high-$p_T$ dihadron correlations in $p$$+$$p$, $p$$+$Al, and $p$$+$Au collisions at $sqrt{s_{_{NN}}}=200$ GeV. The correlations arise from inter- and intra-jet correlations and thus have sensitivity to nonperturb