ترغب بنشر مسار تعليمي؟ اضغط هنا

On the nature of the stellar bridge between Leo IV and Leo V

155   0   0.0 ( 0 )
 نشر من قبل Shoko Jin
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a revised analysis of a speculated stellar bridge between the Milky Way dwarf galaxies Leo IV and Leo V. Using data acquired with Subaru/Suprime-Cam over a 1deg x 4deg field encompassing the two satellites and the region in between, we confirm our previous detection of a stellar overdensity between Leo IV and Leo V (de Jong et al. 2010). The larger area coverage and improved depth of our current dataset allow for an improved analysis of the stellar overdensity that had previously appeared to bridge the two galaxies. A main-sequence turn-off feature visible in the stacked colour-magnitude diagram of the contiguously observed Subaru fields reveals an extended stellar structure at a distance of approximately 20 kpc. Its angular proximity to the Virgo overdensity, as well as a good correspondence in distance and metallicity, suggests that the smaller structure we detect may be associated with the much larger Virgo stellar overdensity.



قيم البحث

اقرأ أيضاً

The last few years have seen the discovery of many faint and ultra-faint dwarf spheroidal galaxies around the Milky Way. Among these is a pair of satellites called Leo IV and Leo V. This pair is found at large distances from the Milky Way (154 and 17 5 kpc respectively). The rather small difference in radial distance, and the fact that they also show a close projected distance on the sky, has led to the idea that we might be seeing a new pair of bound galaxies - like the Magellanic Clouds. In this paper we investigate this speculation by means of a simple integration code (confirming the results with full N-body simulations). As the luminous mass of both faint dwarfs is far too low to allow them to be bound, we simulate the pair assuming extended dark matter haloes. Our results show that the minimum dark matter mass required for the pair to be bound is rather high - ranging from 1.6 x 10^10 Msun to 5.4 x 10^10 Msun (within the virial radii). Computing the mass of dark matter within a commonly adopted radius of 300 pc shows that our models are well within the predicted range of dark matter content for satellites so faint. We therefore conclude that it could be possible that the two galaxies constitute a bound pair.
We have obtained deep photometry in two 1x1 degree fields covering the close pair of dwarf spheroidal galaxies (dSph) Leo IV and Leo V and part of the area in between. We find that both systems are significantly larger than indicated by previous meas urements based on shallower data and also significantly elongated. With half-light radii of r_h=4.6 +- 0.8 (206 +- 36 pc) and r_h=2.6 +- 0.6 (133 +- 31 pc), respectively, they are now well within the physical size bracket of typical Milky Way dSph satellites. Their ellipticities of epsilon ~0.5 are shared by many faint (M_V>-8) Milky Way dSphs. The large spatial extent of our survey allows us to search for extra-tidal features with unprecedented sensitivity. The spatial distribution of candidate red giant branch and horizontal branch stars is found to be non-uniform at the ~3 sigma level. This substructure is aligned along the direction connecting the two systems, indicative of a possible `bridge of extra-tidal material. Fitting the stellar distribution with a linear Gaussian model yields a significance of 4 sigma for this overdensity, a most likely FWHM of ~16 arcmin and a central surface brightness of ~32 mag arcsec^{-2}. We investigate different scenarios to explain the close proximity of Leo IV and Leo V and the possible tidal bridge between them. Orbit calculations demonstrate that they are unlikely to be remnants of a single disrupted progenitor, while a comparison with cosmological simulations shows that a chance collision between unrelated subhalos is negligibly small. Leo IV and Leo V could, however, be a bound `tumbling pair if their combined mass exceeds 8 +- 4 x 10^9 M_sun. The scenario of an internally interacting pair appears to be the most viable explanation for this close celestial companionship. (abridged)
We present the first stellar spectroscopy in the low-luminosity (M_V ~-9.3 mag), dwarf galaxy Leo P. Its significantly low oxygen abundance (3% solar) and relative proximity (~1.6 Mpc) make it a unique galaxy to investigate the properties of massive stars with near-primordial compositions akin to those in the early Universe. From our VLT-MUSE spectroscopy we find the first direct evidence for an O-type star in the prominent HII region, providing an important test case to investigate the potential environmental dependence of the upper end of the initial mass function in the dwarf galaxy regime. We classify 14 further sources as massive stars (and 17 more as candidate massive stars), most likely B-type objects. From comparisons with published evolutionary models we argue that the absolute visual magnitudes of massive stars in very metal-poor systems such as Leo P and I Zw 18 may be fainter by ~0.5 mag compared to Galactic stars. We also present spectroscopy of two carbon stars identified previously as candidate asymptotic-giant-branch stars. Two of three further candidate asymptotic-giant-branch stars display CaII absorption, confirming them as cool, evolved stars; we also recover CaII absorption in the stacked data of the next brightest 16 stars in the upper red giant branch. These discoveries will provide targets for future observations to investigate the physical properties of these objects and to calibrate evolutionary models of luminous stars at such low metallicity. The MUSE data also reveal two 100pc-scale ring structures in Halpha emission, with the HII region located on the northern edge of the southern ring. Lastly, we report serendipitous observations of 20 galaxies, with redshifts ranging from z=0.39, to a close pair of star-forming galaxies at z=2.5.
Leo I is considered one of the youngest dwarf spheroidals (dSph) in the Local Group. Its isolation, extended star formation history (SFH), and recent perigalacticon passage (~1 Gyr ago) make Leo~I one of the most interesting nearby stellar systems. H ere, we analyse deep photometric Hubble Space Telescope data via colour-magnitude diagram fitting techniques to study its global and radially-resolved SFH. We find global star formation enhancements in Leo I ~13, 5.5, 2.0, and 1.0 Gyr ago, after which it was substantially quenched. Within the context of previous works focused on Leo I, we interpret the most ancient and the youngest ones as being linked to an early formation (surviving reionisation) and the latest perigalacticon passage (transition from dIrr to dSph), respectively. We clearly identify the presence of very metal poor stars ([Fe/H]~-2) ageing ~5-6 and ~13 Gyr old. We speculate with the possibility that this metal-poor population in Leo I is related to the merging with a low mass system (possibly an ultra-faint dwarf). This event would have triggered star formation (peak of star formation ~5.5 Gyr ago) and accumulated old, metal poor stars from the accreted system in LeoI. Some of the stars born during this event would also form from accreted gas of low-metallicity (giving rise to the 5-6 Gyr low-metallicity tail). Given the intensity and extension of the 2.0 Gyr burst, we hypothesise that this enhancement could also have an external origin. Despite the quenching of star formation around 1 Gyr ago (most probably induced by ram pressure stripping with the Milky Way halo at pericentre), we report the existence of stars as young as 300-500 Myr. We also distinguish two clear spatial regions: the inner ~190 pc presents an homogeneous stellar content (size of the gaseous star forming disc in LeoI from ~4.5 to 1 Gyr ago), whereas the outer regions display a clear positive age gradient.
We present chemical abundance determinations of two H II regions in the dIrr galaxy Leo A, from GTC OSIRIS long-slit spectra. Both H II regions are of low excitation and seem to be ionised by stars later than O8V spectral type. In one of the H II reg ions we used the direct method: O$^{+2}$ ionic abundance was calculated using an electronic temperature determined from the [O III] $lambdalambda$4363/5007 line ratio; ionic abundances of O$^+$, N$^+$, and S$^+$ were calculated using a temperature derived from a parameterised formula. O, N and S total abundances were calculated using Ionisation Correction Factors from the literature for each element. Chemical abundances using strong-line methods were also determined, with similar results. For the second H II region, no electron temperature was determined thus the direct method cannot be used. We computed photoionisation structure models for both H II regions in order to determine their chemical composition from the best-fitted models. It is confirmed that Leo A in a very low metallicity galaxy, with 12+log(O/H)=7.4$pm$0.2, log(N/O)=$-$1.6, and log(S/O)=$-$1.1. Emission lines of the only PN detected in Leo A were reanalysed and a photoionisation model was computed. This PN shows 12+log(O/H) very similar to the ones of the H II regions and a low N abundance, although its log(N/O) ratio is much larger than the values of the H II regions. Its central star seems to have had an initial mass lower than 2 M$_odot$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا