ﻻ يوجد ملخص باللغة العربية
We perform a systematic combined photometric and kinematic analysis of a sample of globular clusters under different relaxation conditions, based on their core relaxation time (as listed in available catalogs), by means of two well-known families of spherical stellar dynamical models. Systems characterized by shorter relaxation time scales are expected to be better described by isotropic King models, while less relaxed systems might be interpreted by means of non-truncated, radially-biased anisotropic f^( u) models, originally designed to represent stellar systems produced by a violent relaxation formation process and applied here for the first time to the study of globular clusters. The comparison between dynamical models and observations is performed by fitting simultaneously surface brightness and velocity dispersion profiles. For each globular cluster, the best-fit model in each family is identified, along with a full error analysis on the relevant parameters. Detailed structural properties and mass-to-light ratios are also explicitly derived. We find that King models usually offer a good representation of the observed photometric profiles, but often lead to less satisfactory fits to the kinematic profiles, independently of the relaxation condition of the systems. For some less relaxed clusters, f^( u) models provide a good description of both observed profiles. Some derived structural characteristics, such as the total mass or the half-mass radius, turn out to be significantly model-dependent. The analysis confirms that, to answer some important dynamical questions that bear on the formation and evolution of globular clusters, it would be highly desirable to acquire larger numbers of accurate kinematic data-points, well distributed over the cluster field.
The classical theory of cluster relaxation is unsatisfactory because it involves the Coulomb logarithm. The Balescu-Lenard (BL) equation provides a rigorous alternative that has no ill-defined parameter. Moreover, the BL equation, unlike classical th
Globular clusters contain a finite number of stars. As a result, they inevitably undergo secular evolution (`relaxation) causing their mean distribution function (DF) to evolve on long timescales. On one hand, this long-term evolution may be interpre
We have carried out a set of Monte Carlo simulations to study a number of fundamental aspects of the dynamical evolution of multiple stellar populations in globular clusters with different initial masses, fractions of second generation (2G) stars, an
Proper motions (PMs) are crucial to fully understand the internal dynamics of globular clusters (GCs). To that end, the Hubble Space Telescope (HST) Proper Motion (HSTPROMO) collaboration has constructed large, high-quality PM catalogues for 22 Galac
We investigate potential correlations between radio source counts (after background corrections) of 22 Galactic globular clusters (GCs) from the MAVERIC survey, and stellar encounter rates ($Gamma$) and masses ($M$) of the GCs. Applying a radio lumin