ترغب بنشر مسار تعليمي؟ اضغط هنا

Development and validation of a 64 channel front end ASIC for 3D directional detection for MIMAC

203   0   0.0 ( 0 )
 نشر من قبل Olivier Bourrion
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A front end ASIC has been designed to equip the {mu}TPC prototype developed for the MIMAC project, which requires 3D reconstruction of low energy particle tracks in order to perform directional detection of galactic Dark Matter. Each ASIC is able to monitor 64 strips of pixels and provides the Time Over Threshold information for each of those. These 64 digital informations, sampled at a rate of 50 MHz, can be transferred at 400MHz by eight LVDS serial links. Eight ASIC were validated on a 2x256 strips of pixels prototype.



قيم البحث

اقرأ أيضاً

196 - J. P. Richer 2009
A front end ASIC (BiCMOS-SiGe 0.35 mum) has been developed within the framework of the MIMAC detector project, which aims at directional detection of non-baryonic Dark Matter. This search strategy requires 3D reconstruction of low energy (a few keV) tracks with a gaseous muTPC. The development of this front end ASIC is a key point of the project, allowing the 3D track reconstruction. Each ASIC monitors 16 strips of pixels with charge preamplifiers and their time over threshold is provided in real time by current discriminators via two serializing LVDS links working at 320 MHz. The charge is summed over the 16 strips and provided via a shaper. These specifications have been chosen in order to build an auto triggered electronics. An acquisition board and the related software were developed in order to validate this methodology on a prototype chamber. The prototype detector presents an anode where 2 x 96 strips of pixels are monitored.
We present our latest ASIC, which is used for the readout of Cadmium Telluride double-sided strip detectors (CdTe DSDs) and high spectroscopic imaging. It is implemented in a 0.35 um CMOS technology (X-Fab XH035), consists of 64 readout channels, and has a function that performs simultaneous AD conversion for each channel. The equivalent noise charge of 54.9 e- +/- 11.3 e- (rms) is measured without connecting the ASIC to any detectors. From the spectroscopy measurements using a CdTe single-sided strip detector, the energy resolution of 1.12 keV (FWHM) is obtained at 13.9 keV, and photons within the energy from 6.4 keV to 122.1 keV are detected. Based on the experimental results, we propose a new low-noise readout architecture making use of a slew-rate limited mode at the shaper followed by a peak detector circuit.
226 - D. Santos , J. Billard , G. Bosson 2010
Directional detection of non-baryonic Dark Matter is a promising search strategy for discriminating WIMP events from background. However, this strategy requires both a precise measurement of the energy down to a few keV and 3D reconstruction of track s down to a few mm. To achieve this goal, the MIMAC project has been developed. It is based on a gaseous micro-TPC matrix, filled with 3He, CF4 and/or C4H10. The first results on low energy nuclear recoils (1H and 19F) obtained with a low mono-energetic neutron field are presented. The discovery potential of this search strategy is discussed and illustrated by a realistic case accessible to MIMAC.
127 - D. Santos , J. Billard , G. Bosson 2011
Directional detection of non-baryonic DarkMatter is a promising search strategy for discriminating WIMP events from background ones. This strategy requires both a measurement of the recoil energy down to a few keV and 3D reconstruction of tracks down to a few mm. The MIMAC project, based on a micro-TPC matrix, filled with CF4 and CHF3 is being developed. The first results of a chamber prototype of this matrix, on low energy nuclear recoils (1H and 19F) obtained with mono-energetic neutron fields are presented. The discovery potential of this search strategy is illustrated by a realistic case accessible to MIMAC.
208 - C. Grignon 2009
MiMac is a project of micro-TPC matrix of gaseous (He3, CF4) chambers for direct detection of non-baryonic dark matter. Measurement of both track and ionization energy will allow the electron-recoil discrimination, while access to the directionnality of the tracks will open a unique way to distinguish a geniune WIMP signal from any background. First reconstructed tracks of 5.9 keV electrons are presented as a proof of concept.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا