ترغب بنشر مسار تعليمي؟ اضغط هنا

Electronic and Thermoelectric Properties of RuIn_{3-x}A_{x} (A = Sn, Zn)

129   0   0.0 ( 0 )
 نشر من قبل Deepa Kasinathan
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, we reported [M. Wagner et al., J. Mater. Res. 26, 1886 (2011)] transport measurements on the semiconducting intermetallic system RuIn3 and its substitution derivatives RuIn_{3-x}A_{x} (A = Sn, Zn). Higher values of the thermoelectric figure of merit (zT = 0.45) compared to the parent compound were achieved by chemical substitution. Here, using density functional theory based calculations, we report on the microscopic picture behind the measured phenomenon. We show in detail that the electronic structure of the substitution variants of the intermetallic system RuIn_{3-x}A_{x} (A = Sn, Zn) changes in a rigid-band like fashion. This behavior makes possible the fine tuning of the substitution concentration to take advantage of the sharp peak-like features in the density of states of the semiconducting parent compound. Trends in the transport properties calculated using the semi-classical Boltzmann transport equations within the constant scattering time approximation are in good agreement with the former experimental results for RuIn_{3-x}Sn_{x}. Based on the calculated thermopower for the p-doped systems, we reinvestigated the Zn-substituted derivative and obtained ZnO-free RuIn_{3-x}Zn_{x}. The new experimental results are consistent with the calculated trend in thermopower and yield large zT value of 0.8.



قيم البحث

اقرأ أيضاً

FeGa3 is a well known d-p hybridization induced intermetallic bandgap semiconductor. In this work, we present the experimental and theoretical results on the effect of Al substitution in FeGa3, obtained by x-ray diffraction (XRD), temperature depende nt resistance measurement, room temperature Mossbauer measurements and density functional theory based electronic structure calculations. It is observed that upto x = 0.178 in Fe(AlxGa1-x)3, which is the maximum range studied in this work, Al substitution reduces the lattice parameters a and c preserving the parent tetragonal P42/mnm crystal structure of FeGa3. The bandgap of Fe(AlxGa1-x)3 for x = 0.178 is reduced by ~ 24% as compared to FeGa3. Rietveld refinement of the XRD data shows that the Al atoms replace Ga atoms located at the 8j sites in FeGa3. A comparison of the trends of the lattice parameters and energy bandgap observed in the calculations and the experiments also confirms that Al primarily replaces the Ga atoms in the 8j site.
The ferrimagnetic spinel oxide Zn(x)Fe(3-x)O(4) combines high Curie temperature and spin polarization with tunable electrical and magnetic properties, making it a promising functional material for spintronic devices. We have grown epitaxial thin film s with 0<=x<=0.9 on MgO(001) substrates with excellent structural properties both in pure Ar atmosphere and an Ar/O2 mixture by laser molecular beam epitaxy. We find that the electrical conductivity and the saturation magnetization can be tuned over a wide range during growth. Our extensive characterization of the films provides a clear picture of the underlying physics of this spinel ferrimagnet with antiparallel Fe moments on the A and B sublattice: (i) Zn substitution removes both Fe3+ moments from the A sublattice and itinerant charge carriers from the B sublattice, (ii) growth in finite oxygen partial pressure generates Fe vacancies on the B sublattice also removing itinerant charge carriers, and (iii) application of both Zn substitution and excess oxygen results in a compensation effect as Zn substitution partially removes the Fe vacancies. A decrease (increase) of charge carrier density results in a weakening (strengthening) of double exchange and thereby a decrease (increase) of conductivity and the saturation magnetization. This scenario is confirmed by the observation that the saturation magnetization scales with the longitudinal conductivity. The combination of tailored films with semiconductor materials such as ZnO in multi-functional heterostructures seems to be particularly appealing.
Lead and tin chalcogenides have been studied widely due to their promising thermoelectric (TE) properties. Further enhancement in their TE efficiency has been reported upon the reduction of the dimension, which is an important feature in modern devic e fabrications. Using density functional theory combined with the Semi-classical Boltzmann transport theory, we studied the structural, electronic and TE properties of two-dimensional (2D) MX (M = Sn, Pb; X = S, Te) monolayers. Spin-orbit coupling was found to have significant effects on their electronic structure, particularly for the heavy compounds. Structural optimization followed by phonon transport studies prevailed that the rectangular ({gamma}-) phase is energetically the most favorable for SnS and SnTe monolayers, whereas the square structure is found the most stable for PbS and PbTe monolayers. Our results are in good agreement with previous studies. These 2D materials exhibit high Seebeck coefficients and power factors along with low lattice thermal conductivities, which are essential features of good TE materials. The maximum figure of merits (ZT) of 1.04, 1.46, 1.51 and 1.94 are predicted for n-type SnS, SnTe, PBS and p-type PbTe monolayers respectively at 700 K, which are higher than their bulk ZT values. Hence, these monolayers are promising candidates for TE applications.
127 - S. C. Wi , J.-S. Kang , J. H. Kim 2003
Electronic structures of Zn$_{1-x}$Co$_x$O have been investigated using photoemission spectroscopy (PES) and x-ray absorption spectroscopy (XAS). The Co 3d states are found to lie near the top of the O $2p$ valence band, with a peak around $sim 3$ eV binding energy. The Co $2p$ XAS spectrum provides evidence that the Co ions in Zn$_{1-x}$Co$_{x}$O are in the divalent Co$^{2+}$ ($d^7$) states under the tetrahedral symmetry. Our finding indicates that the properly substituted Co ions for Zn sites will not produce the diluted ferromagnetic semiconductor property.
We present the studies of Sn/1-x/Cr/x/Te semimagnetic semiconductors with chemical composition x ranging from 0.004 to 0.012. The structural characterization indicates that even at low average Cr-content x < ?0.012, the aggregation into micrometer si ze clusters appears in our samples. The magnetic properties are affected by the presence of clusters. In all our samples we observe the transition into the ordered state at temperatures between 130 and 140 K. The analysis of both static and dynamic magnetic susceptibility data indicates that the spin-glass-like state is observed in our samples. The addition of Cr to the alloy seems to shift the spin-glass-like transition from 130 K for x = 0.004 to 140 K for x = 0.012.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا