ترغب بنشر مسار تعليمي؟ اضغط هنا

Precision computation of the kaon bag parameter

223   0   0.0 ( 0 )
 نشر من قبل Christian Hoelbling
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Indirect CP violation in K rightarrow {pi}{pi} decays plays a central role in constraining the flavor structure of the Standard Model (SM) and in the search for new physics. For many years the leading uncertainty in the SM prediction of this phenomenon was the one associated with the nonperturbative strong interaction dynamics in this process. Here we present a fully controlled lattice QCD calculation of these effects, which are described by the neutral kaon mixing parameter B_K . We use a two step HEX smeared clover-improved Wilson action, with four lattice spacings from aapprox0.054 fm to aapprox0.093 fm and pion masses at and even below the physical value. Nonperturbative renormalization is performed in the RI-MOM scheme, where we find that operator mixing induced by chiral symmetry breaking is very small. Using fully nonperturbative continuum running, we obtain our main result B_K^{RI}(3.5GeV)=0.531(6)_{stat}(2)_{sys}. A perturbative 2-loop conversion yields B_K^{MSbar-NDR}(2GeV)=0.564(6)_{stat}(3)_{sys}(6)_{PT}, which is in good agreement with current results from fits to experimental data.



قيم البحث

اقرأ أيضاً

We present preliminary results for the calculation of the Kaon Bag parameter $B_K$ in $N_f=2+1$ lattice QCD, using Mobius Domain Wall Fermion ensembles generated by the RBC-UKQCD collaboration. This computation is done directly at physical meson mass es, so that we do not have to rely on chiral perturbation theory or any other mass extrapolation. In parallel, the four-quark operator is renormalised through the Rome-Southampton technique. Finally, we compare our value with previous results and draw some conclusions about the remaining dominant contributions in our error budget.
We present a lattice calculation of the electromagnetic (EM) effects on the masses of light pseudoscalar mesons. The simulations employ 2+1 dynamical flavors of asqtad QCD quarks, and quenched photons. Lattice spacings vary from $approx 0.12$ fm to $ approx 0.045$ fm. We compute the quantity $epsilon$, which parameterizes the corrections to Dashens theorem for the $K^+$-$K^0$ EM mass splitting, as well as $epsilon_{K^0}$, which parameterizes the EM contribution to the mass of the $K^0$ itself. An extension of the nonperturbative EM renormalization scheme introduced by the BMW group is used in separating EM effects from isospin-violating quark mass effects. We correct for leading finite-volume effects in our realization of lattice electrodynamics in chiral perturbation theory, and remaining finite-volume errors are relatively small. While electroquenched effects are under control for $epsilon$, they are estimated only qualitatively for $epsilon_{K^0}$, and constitute one of the largest sources of uncertainty for that quantity. We find $epsilon = 0.78(1)_{rm stat}({}^{+phantom{1}8}_{-11})_{rm syst}$ and $epsilon_{K^0}=0.035(3)_{rm stat}(20)_{rm syst}$. We then use these results on 2+1+1 flavor pure QCD HISQ ensembles and find $m_u/m_d = 0.4529(48)_{rm stat}( {}_{-phantom{1}67}^{+150})_{rm syst}$.
The use of improved staggered actions (HYP, Asqtad) has been proved to reduce the scaling corrections that affected previous calculations of B_K with unimproved (standard) staggered fermions in the quenched approximation. This improved behaviour allo ws us to perform a reliable calculation of B_K including quark vacuum polarization effects, using the MILC configurations with n_f=2+1 flavours of sea fermions. We perform such a calculation for a single lattice spacing, a=0.125 fm, and with kaons made up of degenerate quarks with m_s/2. The valence strange quark mass m_s is fixed to its physical value and we use two different values of the light sea quark masses. After a chiral extrapolation of the results to the physical value of the sea quark masses, we find hat B_K = 0.83+-0.18, where the error is dominated by the uncertainty in the lattice to continuum matching at O(alpha_s^2). The matching will need to be improved to get the precision needed to make full use of the experimental data on epsilon_K to constrain the unitarity triangle.
The rare kaon decays $Ktopiell^+ell^-$ and $Ktopi ubar{ u}$ are flavor changing neutral current (FCNC) processes and hence promising channels with which to probe the limits of the standard model and to look for signs of new physics. In this paper we demonstrate the feasibility of lattice calculations of $Ktopiell^+ell^-$ decay amplitudes for which long-distance contributions are very significant. We show that the dominant finite-volume corrections (those decreasing as powers of the volume) are negligibly small and that, in the four-flavor theory, no new ultraviolet divergences appear as the electromagnetic current $J$ and the effective weak Hamiltonian $H_W$ approach each other. In addition, we demonstrate that one can remove the unphysical terms which grow exponentially with the range of the integration over the time separation between $J$ and $H_W$. We will now proceed to exploratory numerical studies with the aim of motivating further experimental measurements of these decays. Our work extends the earlier study by Isidori, Turchetti and Martinelli which focussed largely on the renormalization of ultraviolet divergences. In a companion paper we discuss the evaluation of the long-distance contributions to $Ktopi ubar{ u}$ decays; these contributions are expected to be at the level of a few percent for $K^+$ decays.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا