ترغب بنشر مسار تعليمي؟ اضغط هنا

Zero temperature geometric spin dephasing on a ring in presence of an Ohmic environment

36   0   0.0 ( 0 )
 نشر من قبل Gergely Zarand
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study zero temperature spin dynamics of a particle confined to a ring in presence of spin orbit coupling and Ohmic electromagnetic fluctuations. We show that the dynamics of the angular position $theta(t)$ are decoupled from the spin dynamics and that the latter is mapped to certain correlations of a spinless particle. We find that the spin correlations in the $z$ direction (perpendicular to the ring) are finite at long times, i.e. do not dephase. The parallel (in plane) components for spin $half$ do not dephase at weak dissipation but they probably decay as a power law with time at strong dissipation.

قيم البحث

اقرأ أيضاً

We propose a scheme to implement a tunable, wide frequency-band dissipative environment using a double chain of Josephson junctions. The two parallel chains consist of identical SQUIDs, with magnetic-flux tunable inductance, coupled to each other at each node via a capacitance much larger than the junction capacitance. Thanks to this capacitive coupling, the system sustains electromagnetic modes with a wide frequency dispersion. The internal quality factor of the modes is maintained as high as possible, and the damping is introduced by a uniform coupling of the modes to a transmission line, itself connected to an amplification and readout circuit. For sufficiently long chains, containing several thousands of junctions, the resulting admittance is a smooth function versus frequency in the microwave domain, and its effective dissipation can be continuously monitored by recording the emitted radiation in the transmission line. We show that by varying in-situ the SQUIDs inductance, the double chain can operate as tunable ohmic resistor in a frequency band spanning up to one GHz, with a resistance that can be swept through values comparable to the resistance quantum R_q = (h/4e^2) ~ 6.5 k{Omega}. We argue that the circuit complexity is within reach using current Josephson junction technology.
We address a particular instance where open quantum systems may be used as quantum probes for an emergent property of a complex system, as the temperature of a thermal bath. The inherent fragility of the quantum probes against decoherence is the key feature making the overall scheme very sensitive. The specific setting examined here is that of quantum thermometry, which aims to exploits decoherence as resource to estimate the temperature of a sample. We focus on temperature estimation for a bosonic bath at equilibrium in the Ohmic regime (ranging from sub-Ohmic to super- Ohmic), by using pairs of qubits in different initial states and interacting with different environments, consisting either of a single thermal bath, or of two independent ones at the same temperature. Our scheme involves pure dephasing of the probes, thus avoiding energy exchange with the sample and the consequent perturbation of temperature itself. We discuss the interplay between correlations among the probes and correlations within the bath, and show that entanglement improves thermometry at short times whereas, if the interaction time is not constrained, coherence rather than entanglement, is the key resource in quantum thermometry.
Conductance signatures that signal the presence of Majorana zero modes in a three terminal nanowire-topological superconductor hybrid system are analyzed in detail, in both the clean nanowire limit and in the presence of non-coherent dephasing intera ctions. In the coherent transport regime for a clean wire, we point out contributions of the local Andreev reflection and the non-local transmissions toward the total conductance lineshapes while clarifying the role of contact broadening on the Majorana conductance lineshapes at the magnetic field parity crossings. Interestingly, at larger $B$-field parity crossings, the contribution of the Andreev reflection process decreases which is compensated by the non-local processes in order to maintain the conductance quantum regardless of contact coupling strength. In the non-coherent transport regime, we include dephasing that is introduced by momentum randomization processes, that allows one to smoothly transition to the diffusive limit. Here, as expected, we note that while the Majorana character of the zero modes is unchanged, there is a reduction in the conductance peak magnitude that scales with the strength of the impurity scattering potentials. Important distinctions between the effect of non-coherent dephasing processes and contact-induced tunnel broadenings in the coherent regime on the conductance lineshapes are elucidated. Most importantly our results reveal that the addition of dephasing in the set up does not lead to any notable length dependence to the conductance of the zero modes, contrary to what one would expect in a gradual transition to the diffusive limit. We believe this work paves a way for a systematic introduction of scattering processes into the realistic modeling of Majorana nanowire hybrid devices and assessing topological signatures in such systems in the presence of non-coherent scattering processes.
177 - I. G. Rau , S. Amasha , M. Grobis 2012
We report measurements of the electron dephasing time extracted from the weak localization (WL) correction to the average conductance in an open AlGaAs/GaAs quantum dot from 1 K to 13 mK. In agreement with theoretical predictions but in contrast with previous measurements in quantum dots, the extracted dephasing time does not saturate at the lowest temperatures. We find that the dephasing time follows an inverse linear power law with temperature. We determine that the extraction of the dephasing time from WL is applicable down to our lowest temperatures, but extraction from finite magnetic field conductance fluctuations is complicated by charging effects below 13 mK.
We measure singlet-triplet dephasing in a two-electron double quantum dot in the presence of an exchange interaction which can be electrically tuned from much smaller to much larger than the hyperfine energy. Saturation of dephasing and damped oscill ations of the spin correlator as a function of time are observed when the two interaction strengths are comparable. Both features of the data are compared with predictions from a quasistatic model of the hyperfine field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا