ﻻ يوجد ملخص باللغة العربية
The spectroscopic factor has long played a central role in nuclear reaction theory. However, it is not an observable. Consequently it is of minimal use as a meeting point between theory and experiment. In this paper the nature of the problem is explored. At the many-body level, unitary transformations are constructed that vary the spectroscopic factors over the full range of allowed values. At the phenomenological level, field redefinitions play a similar role and the spectroscopic factor extracted from experiment depend more on the assumed energy dependence of the potentials than on the measured cross-sections. The consistency conditions, gauge invariance and Wegmanns theorem play a large role in these considerations.
We present a calculation of spectroscopic factors within coupled-cluster theory. Our derivation of algebraic equations for the one-body overlap functions are based on coupled-cluster equation-of-motion solutions for the ground and excited states of t
The process of proton emission from nuclei is studied by utilizing the two-potential approach of Gurvitz and Kalbermann in the context of the full many-body problem. A time-dependent approach is used for calculating the decay width. Starting from an
The possibility to extract relevant information on spectroscopic factors from (e,e$$p) reactions at high $Q^2$ is studied. Recent ${}^{16}$O(e,e$$p) data at $Q^2 = 0.8$ (GeV/$c)^2$ are compared to a theoretical approach which includes an eikonal desc
Spectroscopic factors to low-lying negative-parity states in $^{11}$Be extracted from the $^{12}$B($d$,$^3$He)$^{11}$Be proton-removal reaction are interpreted within the rotational model. Earlier predictions of the $p$-wave proton removal strengths
It is extremely important to devise a reliable method to extract spectroscopic factors from transfer cross sections. We analyse the standard DWBA procedure and combine it with the asymptotic normalisation coefficient, extracted from an independent da