ﻻ يوجد ملخص باللغة العربية
The superconducting state of an optimally doped single crystal of Ba(Fe$_{0.93}$Co$_{0.07}$)$_2$As$_2$ was investigated by $^{75}$As NMR in high magnetic fields from 6.4 T to 28 T. It was found that the Knight shift is least affected by vortex supercurrents in high magnetic fields, $H>11$ T, revealing slow, possibly higher order than linear, increase with temperature at $T lesssim 0.5 , T_c$, with $T_c approx 23 , K$. This is consistent with the extended s-wave state with $A_{1g}$ symmetry but the precise details of the gap structure are harder to resolve. Measurements of the NMR spin-spin relaxation time, $T_2$, indicate a strong indirect exchange interaction at all temperatures. Below the superconducting transition temperature vortex dynamics lead to an anomalous dip in $T_2$ at the vortex freezing transition from which we obtain the vortex phase diagram up to $H = 28$ T.
The recent discovery and subsequent developments of FeAs-based superconductors have presented novel challenges and opportunities in the quest for superconducting mechanisms in correlated-electron systems. Central issues of ongoing studies include int
We report an NMR investigation of the superconductivity in BaFe(2)As(2) induced by Co doping (Tc=22K). We demonstrate that Co atoms form an alloy with Fe atoms and donate carriers without creating localized moments. Our finding strongly suggests that
We present low-temperature specific heat of the electron-doped Ba(Fe$_{0.9}$Co$_{0.1}$)$_{2}$As$_{2}$, which does not show any indication of an upturn down to 400 mK, the lowest measuring temperature. The lack of a Schottky-like feature at low temper
Measurements of magneto-resistivity and magnetic susceptibility were performed on single crystals of superconducting Ba(Fe$_{0.9}$Co$_{0.1}$)$_{2}$As$_{2}$ close to the conditions of optimal doping. The high quality of the investigated samples allows
We observed the anisotropic superconducting-gap (SC-gap) structure of a slightly overdoped superconductor, Ba(Fe$_{1-x}$Co$_{x}$)$_{2}$As$_{2}$ ($x=0.1$), using three-dimensional (3D) angle-resolved photoemission spectroscopy. Two hole Fermi surfaces