ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin Transfer Torques in MnSi at Ultra-low Current Densities

124   0   0.0 ( 0 )
 نشر من قبل Christian Pfleiderer
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Spin manipulation using electric currents is one of the most promising directions in the field of spintronics. We used neutron scattering to observe the influence of an electric current on the magnetic structure in a bulk material. In the skyrmion lattice of MnSi, where the spins form a lattice of magnetic vortices similar to the vortex lattice in type II superconductors, we observe the rotation of the diffraction pattern in response to currents which are over five orders of magnitude smaller than those typically applied in experimental studies on current-driven magnetization dynamics in nanostructures. We attribute our observations to an extremely efficient coupling of inhomogeneous spin currents to topologically stable knots in spin structures.


قيم البحث

اقرأ أيضاً

Magnetic skyrmions are well-suited for encoding information because they are nano-sized, topologically stable, and only require ultra-low critical current densities $j_c$ to depin from the underlying atomic lattice. Above $j_c$ skyrmions exhibit well -controlled motion, making them prime candidates for race-track memories. In thin films thermally-activated creep motion of isolated skyrmions was observed below $j_c$ as predicted by theory. Uncontrolled skyrmion motion is detrimental for race-track memories and is not fully understood. Notably, the creep of skyrmion lattices in bulk materials remains to be explored. Here we show using resonant ultrasound spectroscopy--a probe highly sensitive to the coupling between skyrmion and atomic lattices--that in the prototypical skyrmion lattice material MnSi depinning occurs at $j_c^*$ that is only 4 percent of $j_c$. Our experiments are in excellent agreement with Anderson-Kim theory for creep and allow us to reveal a new dynamic regime at ultra-low current densities characterized by thermally-activated skyrmion-lattice-creep with important consequences for applications.
Controlled movement of nano-scale stable magnetic objects has been proposed as the foundation for a new generation of magnetic storage devices. Magnetic skyrmions, vortex-like spin textures stabilized by their topology are particularly promising cand idates for this technology. Their nanometric size and ability to be displaced in response to an electrical current density several orders of magnitude lower than required to induce motion of magnetic domain walls suggest their potential for high-density memory devices that can be operated at low power. However, to achieve this, skyrmion movement needs to be controlled, where a key question concerns the coupling of skyrmions with the underlying atomic lattice and disorder (pinning). Here, we use Resonant Ultrasound Spectroscopy (RUS), a probe highly sensitive to changes in the elastic properties, to shed new light on skyrmion elasticity and depinning in the archetypal skyrmion material MnSi. In MnSi, skyrmions form a lattice that leads to pronounced changes in the elastic properties of the atomic lattice as a result of magneto-crystalline coupling. Without an applied current, the shear and compressional moduli of the underlying crystal lattice exhibit an abrupt change in the field-temperature range where skyrmions form. For current densities exceeding $j_c^*$ the changes of elastic properties vanish, signaling the decoupling of skyrmion and atomic lattices. Interestingly, $j_c^*$, which we identify as the onset of skyrmion depinning, is about 20 times smaller than $j_c$ previously measured via non-linear Hall effect. Our results suggest the presence of a previously-undetected intermediate dynamic regime possibly dominated by skyrmion-creep motion with important consequences for potential applications.
Current-induced torques on ferromagnetic nanoparticles and on domain walls in ferromagnetic nanowires are normally understood in terms of transfer of conserved spin angular momentum between spin-polarized currents and the magnetic condensate. In a se ries of recent articles we have discussed a microscopic picture of current-induced torques in which they are viewed as following from exchange fields produced by the misaligned spins of current carrying quasiparticles. This picture has the advantage that it can be applied to systems in which spin is not approximately conserved. More importantly, this point of view makes it clear that current-induced torques can also act on the order parameter of an antiferromagnetic metal, even though this quantity is not related to total spin. In this informal and intentionally provocative review we explain this picture and discuss its application to antiferromagnets.
Relativistic current induced torques and devices utilizing antiferromagnets have been independently considered as two promising new directions in spintronics research. Here we report electrical measurements of the torques in structures comprising a $ sim1$~nm thick layer of an antiferromagnet IrMn. The reduced Neel temperature and the thickness comparable to the spin-diffusion length allow us to investigate the role of the antiferromagnetic order in the ultra-thin IrMn films in the observed torques. In a Ta/IrMn/CoFeB structure, IrMn in the high-temperature phase diminishes the torque in the CoFeB ferromagnet. At low temperatures, the antidamping torque in CoFeB flips sign as compared to the reference Ta/CoFeB structure, suggesting that IrMn in the antiferromagnetic phase governs the net torque acting on the ferromagnet. At low temperatures, current induced torque signatures are observed also in a Ta/IrMn structure comprising no ferromagnetic layer.
Using small-angle neutron scattering (SANS), we investigate the deformation of the magnetic skyrmion lattice in bulk single-crystalline MnSi under electric current flow. A significant broadening of the skyrmion-lattice-reflection peaks was observed i n the SANS pattern for current densities greater than a threshold value j_t ~ 1 MA/m^2 (10^6 A/m^2). We show this peak broadening to originate from a spatially inhomogeneous rotation of the skyrmion lattice, with an inverse rotation sense observed for opposite sample edges aligned with the direction of current flow. The peak broadening (and the corresponding skyrmion lattice rotations) remain finite even after switching off the electric current. These results indicate that skyrmion lattices under current flow experience significant friction near the sample edges, and plastic deformation due to pinning effects, these being important factors that must be considered for the anticipated skyrmion-based applications in chiral magnets at the nanoscale.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا