ﻻ يوجد ملخص باللغة العربية
We study the depinning of domain walls by pure diffusive spin currents in a nonlocal spin valve structure based on two ferromagnetic permalloy elements with copper as the nonmagnetic spin conduit. The injected spin current is absorbed by the second permalloy structure with a domain wall and from the dependence of the wall depinning field on the spin current density we find an efficiency of 6*10^{-14}T/(A/m^2), which is more than an order of magnitude larger than for conventional current induced domain wall motion. Theoretically we reproduce this high efficiency, which arises from the surface torques exerted by the absorbed spin current that lead to efficient depinning.
Magnetic droplets are dynamical solitons that can be generated by locally suppressing the dynamical damping in magnetic films with perpendicular anisotropy. To date, droplets have been observed only in nanocontact spin-torque oscillators operated by
Recent advances in the studies of pure spin currents - flows of angular momentum (spin) not accompanied by the electric currents - have opened new horizons for the emerging technologies based on the electrons spin degree of freedom, such as spintroni
We measure and analyze the chirality of the Dzyaloshinskii-Moriya interaction (DMI) stabilized spin textures in multilayers of Ta/Co$_{20}$Fe$_{60}$B$_{20}$/MgO. The effective DMI is measured experimentally using domain wall motion measurements, both
Hydrogen adatoms are shown to generate magnetic moments inside single layer graphene. Spin transport measurements on graphene spin valves exhibit a dip in the non-local spin signal as a function of applied magnetic field, which is due to scattering (
The calculations of the inelastic spin wave scattering by flexure vibrations of the Bloch domain wall (Winters magnons) in thin magnetic films are presented. The approach is based on the interaction of the propagating spin waves with the dynamical em